UNIVERSITY OF SWAZILAND SECOND SEMESTER EXAMINATION 2012/2013

TITLE OF PAPER : Instrumental Methods For Environmental

Analysis - 2

COURSE CODE

EHS574

TIME ALLOWED

Two (2) HOURS

INSTRUCTIONS

Answer any Four (4) Questions. Each

Question Carries 25 Marks

A periodic table and other useful data have been provided with this paper.

REQUIRED: GRAPH PAPER

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question 1 (25 marks)

- a) Explain the following terms:
 - i) A normal calibration curve
 - ii) Matrix matching [2]
- b) Briefly discuss how the multiple point external standardization, (the Normal Calibration curve) can be used to obtain the concentration of a sample during a FAAS analysis.

 [8]
- c) After all the necessary pretreatments, the ashed residue of 4.02g of a plant sample was dissolved in 10mL of 1:9 HNO₃, filtered, and diluted to 50mL in a volumetric flask. The following data were obtained during a this analysis for the concentration of Na by the flame atomic emission spectroscopic(FAES), method

Sample	ppm Na	Emission (arbitrary units)
blank	0	0
standard 1	2.00	90.3
standard 2	4.00	181
standard 3	6.00	272
standard 4	8.00	363
standard 5	10.00	448
sample		238

Determine the parts per million Na in the plant sample.. [13]

Question 2 (25 marks)

- (a) Sate the Nernst's distribution law. Give its mathematical expression and define all the parameters involved in it. [3]
- (b) The distribution coefficient, K_D and distribution ratio, D, are terms used during the solvent extraction analysis:
 - (i) Differentiate these two terms.
 - (ii) Give an example to illustrate the difference.

[4]

[2]

- (c) For the extraction of a weak acid, HB, whose anion does not penetrate the organic phase, and is monomeric in both phases:
 - (i) Supply the expression for its distribution ratio, D, and define all the parameters in it.

(ii) Discuss the factors that influence the value of D.	[4]· [2]
(d) A solute, X, was being isolated from an aqueous sample by carbon tetrachloride as the extracting solvent. If its distribut(i) Calculate the % of X extracted from the aqueous phase w	ion ratio is 85.0.
aqueous solution of X is extracted with 50.0mL of carbo (ii) Would you have preferred using two successive extractio tetrachloride? Justify your answer with appropriate calcu	ons, each with 25.0mL of carbon
Question 3 (25 marks)	
(a) Describe the procedure for the solvent extraction of a solute using 100mL carbon tetrachloride as the organic solvent.	from a 50mL aqueous sample, [6]
(b)	
(i) What is a chelating agent?	[1]
(ii) Write the equation for the formation of a metal chelate as	nd identify the reactant and the
products in the reaction. (iii) Give two properties of a motel chalete formed decimal and the second secon	[3]
(iii) Give two properties of a metal chelate formed during the a metal chelate.	e solvent extraction of a metal as [2]
(iv) Give two examples of a chelating agent and one metal fo	
for extraction as a metal chelate.	[3]
(c) Give the expression for the distribution ratio, D of a metal be solvent extraction as a metal chelate. Hence briefly discuss the distribution ratio, D.	
(d) For a 1.0 x 10^{-7} M solution of a metal ion for which: $n = 2, K_D$	$_{DL} = 1.1 \times 10^{4}; K_{DM} = 7.0 \times 10^{4};$
$K_f = 5.0 \times 10^{22}$. Estimate its distribution ratio during its extra	ction as a metal chelate using a
$1.0 \times 10^{-4} \text{M}$ dithizone at pH 1.0; Take $K_a = 3.0 \times 10^{-5}$	[6]

Question 4 (25 marks)

- (a) For the following sets of chromatographic terms, explain/define the terms in each set and give an expression that relates them.
 - (i) Retention time, t_R , adjusted retention time t_R' and dead time, t_M .
 - (ii) Capacity factor, k, retention time, t_R and dead time, t_M.

- (iii) Volume flow rate, F, retention volume, V_R and retention time, t_R (Each term needs to be defined only once) . [9]
- (b) Explain the terms resolution, R_s, between two adjacent peaks in a chromatogram. [2]
- (c) A solute was eluted completely from a chromatographic column over a period of 2min. 24s. Calculate its retention volume if its flow rate is 24.0 mL/min. [4]
- (d) During the chromatographic analysis of a sample, two adjacent peaks, A and B appear with the following features:

Component	t _R (min)	W (min)		
A	8.36	0.96		
$oldsymbol{B}$	9.54	0.64		

- (i) Calculate the resolution between A and B.
- (ii) If the retention time for an unretained solute is 1.20min, calculate the selectivity factor for A and B.

 [3]
- (iii) Calculate the capacity factors for A and B. [4]

Question 5 (25 marks)

- In gas Chromatography (GC), what is column efficiency? How is its value influenced by N, the number of theoretical plates and H, the plate height? What other factors influence it?
- (b) Explain the term 'temperature programming' with respect to GC analysis. With the aid of a graphical illustration, show how its use affects the resolution, R, the retention time and the number of solutes eluted during a GC analysis. Summarize its advantages over the isothermal method.
- Give five general applications of 'Gas Chromatographic Analysis'. Give four examples of industries and/or laboratories in Swaziland in which this method is being routinely employed for analysis.

Question 6 (25 marks)

(a)	GIV	e three advantages of thin layer chromatography (T.L.C) over paper chromatography	ograph
(b)	For	the T.L.C.	[3]
	(i)	Give two examples each of the stationary phases and mobile phases common for analysis.	ıly use
	(ii)	What stationary phases would you employ for the analysis of:	
		• a polar compound	
		a weakly polar compound	[2]
(c)	Brie spot	efly describe the procedure for chromatogram development and detection of a set.	nalyte [7]
(d)	For	the 'Rf-Value' of a solute during TLC experiments:	
	(i)	Give its definition.	[1]
	(ii)	Using a diagrammatic illustration only, demonstrate how it can be measure	d. [4]
(e)	Give	e four factors that influence the Rf Value of a compound.	[4]

•

•

PERIODIC TABLE OF ELEMENTS

* *			\S	<u></u>		* ~	
thanide §	273 87	132.91 55	85.468 IRb 37	39.098 X	22.990 Na	6.941 L.i	-======================================
Series	226.03 Rn 88	137.33 Ba	87.62 Sr 38	40.078 Ca 20	24.305 Mg 12	9.012 Be	/ N
	***/Ac	*L:1 57	38,906 Y 30	44.956 Sc 21	·		3
732.04 732.04 732.04	102 102 103 103 103 103 103 103 103 103 103 103	178.49 HI 72	91.224 27.	47.88 Ti			Y
140.91 Pr 231.04 Pri	(262) 105	73 73	92.906 Nb	50.942 V 23			
144.24 Nd 238.03 U	1263 1263)			2 51,996 Cr 24	TW		¥
(145) Pm 93 Np 93	(262) Uns	1#6.21 Re		6 54.938 Mn 25	NOLLISNY		
150.36 Sm 62 (244) Pu 94	(265) Uno 108			35.847 Fig 26			
151.96 Eu 243) 25	(266) Unc 109			47 58.933 Co 27	S.LNEWETE		8 GROUPS
157.25 Ga (247) 96	(267) Uun 110	22		33 55.69 Ni 28	<i>ੋ</i> ਤੋਂ		Villa 9 Villa
5 158.93 Tb 65 97 97				5			
		97	07.87 Ag 47	3.546 Cu		Atquiric mass Symbol Atomic No.	= -
8		200.59 Hg #0	12.41 Cd 48	30 22 30		hol -	= -2
164.93 ES 99		204.38 '[] *	114,82 In	69.723 Ca	26.982 A1	7 TO .81	13
167.26 Er 68 100		207.2 Pb 82	118.71 Sm 50	72.61 Ge	28.086 Si	12.01 C	3 3 4
101 (228) (228) (28.93		208.98 Bi 83	121.75 Sb 51	74.922 As	30.97 P	NO.191	X
102 (259) 102 (259)		(209) Po	(A _ 1 N)	78.96 Se	4 32.06 S	8 0 666'51 (4	-
174.97 103 103		(210) A1 85		79.904 Ba	6 35.453 CI		5 5 5
				···		32	YIIIA 1 July 2 Z
	;		٥	C	0.7	2	

and the state of t

.

.

```
Quantity
                      Symbol
                                            Value
                                                                            General data and
 Speed of light
                                                                            fundamental
    charge
 Faraday
                      F = eNx
                                          9.5435 x 10°C mol-1
   Constant
 Boltzmann
                       ż
                                           1.380 66 × 10-** J K-1
    constant
 Gas constant
                      R = kN_A
                                           8.314 51 J K-1 mol-1
                                          8.205 78 × 10-2
                                                      dm^2 z t m K^{-1} moi^{-1}
                                           62.364 L Torr K-1 mai-1.
 Planck constant
                       ħ
                                          6.52508 x 10-34 Js
                      \hat{n} = h/2\pi
                                          1.054 57 × 10-34 J s
  Avogacio
                      \mathcal{N}_{\lambda}
                                          6.027 14 × 10<sup>20</sup> mg(-1
    constant
  Atomic mass
                      Ų.
                                          1.660 54 × 10-27 kg
    មក្
 Mass of
    electron
                      FFT.
                                          9.109 39 × 10-11 kg
     proton
                                          -1.572-62 × 10-27 kg
    neutran
                                          1.574 93 × 10-27 kg
 Vacuum
- . permeability;
                                          4# × 1077 J s2 C-2 m-1
                                          41E × 10-7 T2 J-1 (7)
 Vacuum
                      \epsilon_0 \approx 1/c^2 \mu_0
                                          8.854 19 × 10-12 J-1 C1 m-1
    Perminivity
                      dreo
                                          1.112 65 × 10-19 J-1 C2 m-1
 Sohrmagneton
                      Hameh/2m.
                                          9.274 C2 × 10-14 JT-1
  Nuclear
                      \mu_{\rm M}=e \dot{m}/2m_{\rm p}
                                          5.050 79 x 10-17 JT-1
    magneton
  Electron g
                      ⊈*
    value .
                                           2.002 32,
 Sonr radius
                      a_2 = 4\pi \epsilon_2 \hbar^2 / m_e \epsilon
                                          5.291 77 x 10-11 m
  Aydberg
                      R_{-} = m_{+}e^{4}/8h^{3}c
                                          1.097 37 × 105 cm -1
    Constant
 Fine structure
                      c = \mu_0 e^2 c/2h
                                          7.29735 \times 10^{-3}
    thestand
  Gravitational
                      G
                                          6.672 59 × 10<sup>-11</sup> N m<sup>2</sup> kg<sup>-2</sup>
    constant
  Standard 1
    acceleration
                                        9.806 65 m s - 3
   of free fallt
                                                                           tesuley (benined) spend
                   m
                          щ
                                  11.1
                                                              M
                                                                           Prefixes
                                                                     G
  femto
           Pico
                 pano micro
                                 milli
                                               deci kilo
                                         centi
                                 10-3
```

Control of the Contro