# University of Swaziland



## Supplementary Examination, July 2013

### BSc Env. Health Sc. I

Title of Paper

: Algebra for Health Sciences

Course Number

: EHM106

Time Allowed

: Two (2) hours

Instructions

•

- 1. This paper consists of SIX questions.
- 2. Each question is worth 25%.
- 3. Answer ANY FOUR questions.
- 4. Show all your working.

This paper should not be opened until permission has been given by the invigilator.

#### Question 1

(a) Find the value(s) of x such that the following sequence is an AP

 $(x+2), (x+3), (2x^2+1).$  [7 marks]

(b) Work out and express your answer in the form a + ib

i.  $(2+i)^2(3-4i)$  [6 marks]

ii.  $\frac{5}{1-2i} + \frac{13i}{2-3i}$  [6 marks]

(c) Find the centre and radius of the circle described by the equation

 $x^2 + y^2 - 14y + 40 = 0.$  [6 marks]

#### Question 2

(a) Expand and simplify term by term

 $\left(2x + \frac{1}{x}\right)^4$  [9 marks]

(b) Use de Moivre's theorem to expand

 $\left(1-i\sqrt{3}\right)^6$ 

expressing your answer in the form a + ib.

[8 marks]

(c) A ball fall from a height of 20 metres. If the maximum height attained decreases by 4% each time, fin the total distance travelled by the ball in coming to rest. [8 marks]

#### Question 3

(a) Solve for x

i. 
$$8^{1-2x} = \frac{1}{256}$$
 [4 marks]

ii. 
$$\log_2(3x+7)=4$$
 [3 marks]

iii. 
$$\log_6(x+4) - \log_6(x-1) = 1$$
 [6 marks]

(b) Given the matrices

$$A = \begin{pmatrix} -2 & 1 \\ 1 & -4 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & -4 \\ -2 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} -1 & 1 & -2 \\ 2 & -1 & 0 \end{pmatrix}$$

work out (where possible)

i. 
$$A + A^T$$
 [3 marks]

ii. 
$$AC$$
 [3 marks]

iii. 
$$CA$$
 [3 marks]

iv. 
$$C^T A$$
 [3 marks]

## Question 4

(a) Express as a single logarithm with coefficient 1, and simplify

$$\log_a 1 + \log_a a^2 + 2\log_2 a^4 - 3\log_2 a^2$$
. [9 marks]

(b) Solve the system

$$x + 2y + 3z = 0$$

$$2x + 2z = -1$$

$$2x + y = 3$$

using Cramer's rule.

[16 marks]

#### Question 5

- (a) Given that  $\cos A = -\frac{3}{5}$  and A lies in QII, find the exact values of
  - i.  $\cos 2A$

[5 marks]

ii.  $\tan 2A$ 

[5 marks]

Hence state the quadrant in which the angle 2A lies.

[2 marks]

(b) Find the 13th term in the binomial expansion of

$$\left(x-\frac{y}{x}\right)^{15}$$
.

[5 marks]

(c) The population of a city grows according to

$$P(t) = 45,000e^{0.03t}$$

where t is the number of years from year 2000. Find

i. the population of the city in year 2010;

[3 marks]

ii. the date when the population will be double that in 2000.

[5 marks]

#### Question 6

· :,

(a) Find the value of

a. 
$$\sum_{n=0}^{70} (3n+2)$$

[4 marks]

$$b. \sum_{n=0}^{\infty} 15 \left(\frac{1}{2}\right)^n$$

[3 marks]

(b) Prove

$$(1 + \tan^2 \theta)(1 - \sin^2 \theta) = 1.$$

[9 marks]

(c) Find a solution set of

$$2\sin\theta\cos\theta + \sin\theta = 0$$

in the interval  $-180^{\circ} \leq \theta \leq 180^{\circ}$ .

[9 marks]

## EHM106: Algebra for Health Sciences

- Polynomials. Long division and synthetic division of polynomials. Factor and remainder theorems. Rational roots of polynomials.
- Exponential and logarithmic functions. Exponents, radicals and the logarithm. Solving exponential equations and logarithmic equations. Applications
- **Trigonometry.** Trigonometric ratios and fundamental trigonometric identities. Solving trigonometric equations.
- Binomial expansions. Binomial theorem of expansions and its applications.
- **Progressions.** Arithmetic and Geometric Progressions and their applications.
- Matrices. Properties of Matrices. Addition, Subtraction and Multiplication of matrices. Transpose and
- Determinants. Solutions of equation systems using Cramer's rule.
- Coordinate Geometry. Properties and equations of
- \* straight lines and circles.
- Complex numbers. Algebra of complex numbers. Polar representation of complex numbers. Solving quadratic equations with complex roots.

- References . A