University of Swaziland

Final Examination, December 2012

BSc Env. Health Sc. I

Title of Paper

: Algebra for Health Sciences

Course Number

: EHM106

Time Allowed

: Two (2) hours

Instructions

•

- 1. This paper consists of SIX questions.
- 2. Each question is worth 25%.
- 3. Answer ANY FOUR questions.
- 4. Show all your working.

This paper should not be opened until permission has been given by the invigilator.

Question 1

(a) Consider the arithmetic progression

$$20, 26, 32, \cdots$$

Find the

i. formula for the n-th term

[3 marks]

ii. sum of the first 20 terms

[4 marks]

(b) Work out and express your answer in the form a + ib

i. (1+2i)(1+3i)(1+4i)

[6 marks]

ii. $\frac{10}{1+3i} + \frac{10}{1-2i}$

[6 marks]

(c) Find the centre and radius of the circle described by the equation

$$x^2 + y^2 - 8x + 6y + 16 = 0.$$

[6 marks]

Question 2

(a) Expand and simplify term by term

$$\left(3x^3+\frac{y}{x}\right)^5$$

[9 marks]

(b) Use de Moivre's theorem to expand

$$\left(1+i\sqrt{3}\right)^6$$

expressing your answer in the form a + ib.

[9 marks]

(c) A ball fall from a height of 20 metres. If the maximum height attained decreases by 4% each time, fin the total distance travelled by the ball in coming to rest. [7 marks]

•

Question 3

(a) Solve for x

i.
$$\left(\frac{4}{9}\right)^{2x-3} = \frac{81}{16}$$
 [4 marks]

ii.
$$\log_3(4x - 7) = 2$$
 [3 marks]

iii.
$$\log_6 x + \log_6 (x - 1) = 1$$
 [6 marks]

(b) Given the matrices

$$A = \left(egin{array}{ccc} -2 & 1 \ 0 & 3 \end{array}
ight), \quad B = \left(egin{array}{ccc} 1 & -4 \ 2 & 5 \end{array}
ight), \quad C = \left(egin{array}{ccc} 4 & -1 & 3 \ 1 & 0 & 2 \end{array}
ight)$$

work out (where possible)

i.
$$2A - 3B^T$$
[3 marks]ii. A^TB [3 marks]iii. CB [3 marks]iv. C^TB [3 marks]

Question 4

(a) Express as a single logarithm with coefficient 1, and simplify

$$\log_a a^2 - 4\log_5 a^2 + 3\log_5 a^4 - 6\log_5 \sqrt{a}$$
. [9 marks]

(b) Solve the system

$$x + 2y + z = 0$$

$$2x - y + 2z = 4$$

$$2x + y = 1$$

using Cramer's rule.

[16 marks]

Question 5

(a) Given that $\sin A = \frac{3}{5}$ and A lies in QII, find the exact values of

i. $\cos 2A$

[5 marks]

ii. $\tan 2A$

[5 marks]

Hence state the quadrant in which the angle 2A lies.

[2 marks]

(b) Find the 15th term in the binomial expansion of

$$\left(2x^2-\frac{y}{x}\right)^{16}$$
.

[5 marks]

(c) The population of a city grows according to

$$P(t) = 160,000e^{0.02t}$$

where t is the number of years from year 2000. Find

i. the population of the city in year 2015;

[3 marks]

ii. the date when the population will be double that in 2000.

[5 marks]

Question 6

(a) Find the value of

i.
$$\sum_{n=10}^{107} (7n-3)$$

[4 marks]

ii.
$$\sum_{n=0}^{\infty} 60 \left(\frac{2}{5}\right)^n$$

[3 marks]

(b) Prove

$$1 - \frac{\cos^2 A}{1 + \sin A} = \sin A.$$

[9 marks]

(c) Find a solution set of

$$2\cos^2\theta + \sin\theta = 2$$

in the interval $-180^{\circ} \leq \theta \leq 180^{\circ}$.

[9 marks]