UNIVERSITY OF SWAZILAND

DEPARTMENT OF ENVIRONMENTAL HEALTH SCIENCE

SUPPLEMENTARY EXAMINATION 2012

TITLE OF PAPER:

INSTRUMENTAL METHODS FOR ENVIRONMENTAL ANALYSIS – I

COURSE CODE:

EHS573

TIME ALLOWED: TWO (2) HOURS

INSTRUCTIONS:

Answer any four (4) questions. Each question carries 25 marks.

A periodic table and other useful data have been provided with this paper.

You are not supposed to open this paper until permission to do so has been granted by the Chief Invigilator.

Question 1(25 marks)

(a) Distinguish between classical and instrumental methods of analysis. [2] (b) What are the unique advantages of instrumental methods of analysis over the classical methods? [4] List the principal classes of chemical instrumentation. Give two specific examples of instrumental techniques from each principal class given. [6] Using a labeled diagram, show the basic components of an instrument for (d) chemical/environmental analysis, discuss the functions of any one of the components and give an example in named equipment. [8] (e) List the salient performance characteristics of an instrument for environmental analysis. [5] Question 2(25 marks) A given light radiation passes basic components from a medium x, to another (a) medium y, having refractive indices n_x and n_y respectively. Given that $n_x > n_y$. In which of the two media does the radiation have a greater: (i) Wavelength; (ii) Frequency; (iii) Energy? [3] (b) (i) Define the terms 'Absorbance' and 'Transmittance' for an absorbing medium. [2] (ii) Obtain an expression relating the two terms i.e A & T. [4] (c) For a medium that obeys Beer's law; (i) Discuss the variation of absorbance with the pathlength and concentration of the solution respectively at a given wavelength. (ii) For a poorly absorbing medium,, which cell would you prefer to use and why? - a 1.00-cm of a 4.00-cm cell. [3] A bismuth(III) complex solution has a molar absorptivity of 9.32 x 10³ M⁻¹cm⁻¹ at (d) 470nm. (i) Calculate the absorbance of a 6.24 x 10⁻⁵ M solution of the complex at 470nm in a 2.00-cm cell. (ii) Estimate the %T of the solution in d(i). (iii) What is the concentration (in M), of the complex in a solution having the same absorbance an the described in d9i0 when measured at 470nm in a 4.00-cm cell? [10]

Question 3(25 marks)

(a)	Briefly discuss the causes of, and the corresponding corrections for trudeviations fro Beer's law.						al) [6]		
(b)	(i)	What factors are	e responsible f	for instru	mental deviation fi	rom Beer's	_		
	(ii)	How can instrur	nental deviation	on be ge	nerally minimized?)	[3] [1]		
(c)	When a beam of polychromatic radiations, made up of two wavelengths, λ and λ with molar absorptivities of ϵ and ϵ^1 respectively pass through an absorbing solution, the combined, A_c , is given by:								
A _c = (i)	$\log(P_o)$ $\epsilon =$	$-P_0^{1}) - \log(P_0 10)$ $\epsilon^{1} \qquad \text{(iii)}$	$ \epsilon + P_0^{1}10^{\epsilon_{bb}} $ $ \epsilon > \epsilon^1 $	c). What (iii)	deductions can be \in $<$ \in ¹	made wher	n: [6]		
(d) (ii (iii (iv	meas) Give stray) How conc) Com the t	surements. the expression regradiation, P_s (Raris the value of the entrated and $P_s \approx P_s$ pare A_m (measure	elating the meadiant power of the observed above P + P _s ?	asured af stray rasorbance	ay radiations during bsorbance, A _m in the adiation), P _o and P. e affected when the (true absorbance) a from Beer's law can	ne presence e solution is and hence d	of the highly leduce		
Que	stion 4(25 marks)							
(a)	What i	s a monochromat	tor?				[1]		
(b)		pectrophotomete pective functions			of a monochromate iven.				
(c)	For each of the following spectral regions, suggest an appropriate monocromator prism material:								
	(i) V						[4]		
(d)		ne advantages and s prism" as mond			action gratings" wlophotometers.	nen compai	red with [4]		

- (e)
 (i) Explain the term 'Disperson of a prism'. Hence, briefly describe the working principles of a prism as a monochromator.
 (ii) What are the factors that increase the resolution of a 'prism' and 'diffraction'.
 - (ii) What are the factors that increase the resolution of a 'prism' and 'diffraction gratings' [4]

Question 5(25 marks)

- (a) Distinguish between a selective detector and non-selective detector. Give an example of each type. [3]
- (b) As briefly as possible, discuss the design, the region of use and the working principles of each of the following spectrophotometer detectors:
 - (i) The Photomultiplier tube, (ii) The thermocouple.

 Give one major weakness of the Thermocouple as a detector. [15]
- (c) What are the necessary precautions that should be taken in the handling of a cuvette/cell, during a UV spectrophotometeric analysis? [4]
- (d) Describe how you would prepare a KBr pellet for an IR spectroscopic analysis of a sample. [3]

```
Quantity
                     Symbol
                                                                             General data and
                                                                          fundamental
Speed of light?
                                          2.997 924 58 × 10° m s-1
                                        ___constants-
Elementary
  charge
Faraday.
                      F = eN_{\lambda}
                                           9.5485 x 10°C mol~1
  constant
 Boltzmann
                      k
                                           1.380 66 x 10-13 J K-1
   constant
 Gas constant
                      R = kN_{\star}
                                           8.314 S1 J K-1 mol-1
                                           8.205 78 × 10<sup>-2</sup>
                                                        dm² atm K+1 mol-1
                                            62.364 L Torr K-1 mol-1 '
 Planck constant
                                            6.526 08 × 10-4 Js
                                            1.05457 × 10-34 J s
                      h = h/2\pi
  Avogadro
                       ٧.
                                            5.022 14 × 10<sup>23</sup> mpl<sup>-1</sup>
   constant
  Atomic mass
                                            1.660 54 × 10<sup>-27</sup> kg
    unit
  Mass of
     electron
                       m.
                                            9.109 39 × 10-31 kg
                                    -1.572-62 x 10<sup>-27</sup> kg
     proton ...
                                 1.574 93 × 10-27 kg
     neutron
                        m,- -
   Vacuum
                                             4# × 1077 J s2 C72 m-1
  . . · permeability†
                                              4x × 10-7 T2 J-1 m3
   Vacuum
                        z_0 = 1/c^2 \mu_0
                                             8.854 19 × 10-12 J-1 C2 m-1
  perminivity
                                              1.112 55 × 10-19 J-1 C2 m-1
                        47750
    Sohr magneton
                        \mu_s = e \hbar/2m.
                                              9.274 02 × 10-14 JT-1
    Nuclear
                         \mu_{\rm H}=e\hbar/2m_{\rm p}
                                              5.050 79 × 10-27 JT-1
     magneton
    Electron g
                                              2.002 32.
      value
    Bohr radius
                         a_2 = 4\pi \epsilon_2 h^2/m_e \epsilon
                                              5.291 77 x 10-11 m
    Rydberg
                         R_{\star} = m_{\star} e^{\star}/8h^2 c
                                              1.097 37 × 105 cm-1
      constant
     Fine structure
                                               7.29735 \times 10^{-3}
                         c = \mu_0 e^2 c/2h
       constant
     Gravitational
                                               5.672 59 × 10<sup>-11</sup> N m<sup>2</sup> kg<sup>-1</sup>
       tostant
     Standard
                                              9.806.65 m s-1
       acceleration
       of free fall :
                                                                                  t Exact (defined) values
                 9
                               и
                                       173
                                                       đ
                                                                    M
                                                                                   Prefixes
               pico nano micro
       femto
                                      milli
                                              centi
                                                     deci kilo
                                                                         giga
       10-15
                                      10-3 _ 10-2 10-1 10-
                      _10-*_ 10-*
                                                                  104
                                                                           103
```

PERIODIC TABLE OF ELEMENTS

						.					
	<u> </u>	<u>.</u>	7	6	υ, ·	4	w	2	-	ERRODS	
	*Actinide Series	thanid	223 Fir	ස	85.468 Rb 37	39.098 X 860'6E	22.990 Na	6.94I	- = ag		Ī
	Series	Lanthanide Series	226.03 Ra 88	137.33 Ba	87.62 Sr 38	40.078 Ca 20	24.305 Mg	9,012 Be		IIA 2	
			(227) **Ac 89	+L _a	88.906 Y	44.956 Sc 21		~			
	232,04 TJ h 90	140.12 Ce 58	(261) Ref	178.49 111 72	91.224 Zr 40	77.88 Ti 22					
() ind	231.04 Pa 91	140.91 Pr 59	(262) Ha 105	Ta 73	4 92.906 41	8 50.942 V 23				4	
') indicates the mass number of the isotope with the longest half-life.	238.03 U 92	144.24 Nd 60	(263) Unh 106		95.94 Mo 42	42 51.996 Cr 24	11			VI)	
he mas:	237.05 Np 93	(145) Pni 61	(262) Uns	- 3		 -	TRANSITION ELEMENTS			VIII 6	
danna s			<u> </u>		98.907 1 Tc 43	54.938 Mn 25	NOI			VIII)	
er of th		150.36 I Sm 62	(265) Uno 108	190.2 76	Ru 44	55.847 Fe 26	ELEM			~	į.
ie isotoj	(243) Anı 95	151.96 Eu 63	(266) Une 109	192.22 L r 77	102.91 RIL	58.933 Co 27	RTY			9	GROUPS
ze with	(247) Cm 96	(57.25) Gd 64	(267) Uun	195.08 Pt 78	106.42 Pd 46	58.69 Ni 28	·			10]
the tons	(247) Bk 97	158.93 Tb 65		196.97 Au 79	107.87 An 47	63.546 Cu 29		≥ 25 ≥		==	
est hal	(251) 98 98	162.50 Dy 66		200.59 Hg 80	7 Cd 48	6 65.39 Zn 30		Atomic mass Symbol Atomic No.		-	
Hife.	(252) Es 99	164.93 110 67		9 204.38 T1 81	ln 49	9 69.723 Ga 31	26.982 Al	- +		3 2	
	(257) Fin 100		. <u>-</u>							3 3	
	101 P.W. (852)			207.2 21 Pb 82 2	Sh Sh 50		28.086 Si	C C		Σ×	
				208.98 Bi 83	121.75 Sh Si	74.922 As 33	30.974 P 15	14.007 N 7		٧٨	
	(259) No 102	73.04 Yb 70		(209) Po 84	127.60 Te 52	78.96 Se	32,06 S 16	8 O 666'51	•	۲ <u>۲</u> ۲	
	(260) Lr 103	174.97 Lu 71		(210) /\dagger 85	126.90 I 53	79.904 Br 35	35.453 CJ 17	18.998 If		VIIA	The same of the sa
				(222) R _{in} 86	131.29 Xe S4	36 17.180	39.948 Ar 18	20.180 Nc		VIIIV #1	
			•					G	_	2]