UNIVERSITY OF SWAZILAND # Faculty of Health Science Department of Environmental Health Sciences Final Examination 2011/12 Title of paper: Instrumental Methods for Environmental Analysis Course code: EHS 573 Time allowed: 2 HOURS Marks allocation: 100 Marks ### **Instructions:** 1) Answer any Four (4) questions - 2) Each question is weighted 25 marks - 3) Write neatly and clearly - 4) A periodic table and other useful data have been provided with this paper. DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR ### Question1 (25 marks) - (a) Distinguish between the following terms: (i) Precision and Accuracy, (ii) Precision and Bias. (4) - (b) What are the factors you would take into consideration before choosing an appropriate method for the analysis of a given sample? (4) - (c) Why is sample pretreatment necessary before carrying out the actual analysis on a given sample? Give four examples of such pretreatment steps often employed in analytical laboratories. (5) - (d) Why should the chemical environment of a sample be properly controlled during analysis? Give one such control measures that could be taken to assure accuracy of obtained data. (3) - (e) State, sequentially, the steps that should be followed in solving a given analytical problem (i.e. in the analysis of a given sample). (5) - (f) Define the' detection limit' of an analytical method. Using a labeled figure, illustrate the useful concentration range of an analytical method. (4) ### Question 2 (25 marks) - (a) When a molecule absorbs a photon or radiation, - (i) Discuss the possible types of transitions it can undergo - (ii) Define the type of energy involved in each transition, - (iii) Arrange the energies involved in the transitions in decreasing order of their magnitudes. (8) - (b) (i) State Beer's law - (ii) State the mathematical expression for Beer's law, define all the terms in it and give their respective S.I. units. (5 - (c) The molar absorptivity, ε , of the solution of a compound is $9.32 \times 10^3 \text{M}^{-1} \text{cm}^{-1}$ at 508nm. Calculate: - (i) The absorbance of a 3.12x 10⁻⁵M solution of the compound at 508nm in a 2.00 cm cell. - (ii) The %T of the solution described in c(i), above, - (iii) The absorbance and the %T of the solution described in c(i) above when a 4.00 cm cell is used, with the measurement also taken at 508nm. Based on Beer's law, account for the difference in the two absorbance values. (12) ### Question 3 (25 marks) - (a) Explain the expression "deviation from Beer's law". Use a graphical figure to differentiate between a positive and a negative deviation from Beer's law. (4) - (b) Discuss the causes and possible correction of real deviation from Beer's law. (4) - (c) A beam of polychromatic light consisting of two wavelengths λ , and λ' , to which Beer's law is applicable is made to pass through an absorbing solution. - (i) Give an expression for the combined absorbance, A_c for the beam of light. - (ii) With appropriate explanation, what type of deviation from Beer's law occurs when: $C = C^!$, $C > C^!$ and $C < C^!$ respectively? (7) - (d) Occurrence of stray radiations within the instrument is a common feature during spectroscopic analysis. - (i) State the main characteristics of such radiations - (ii) Give the expression for the measured absorbance, A_m , in the presence of such radiations in terms of P_s (radiant power of stray radiation), P_o and P. - (iii) How is the value of A_m affected when the solution is highly concentrated and $P_s \approx P + P_s$? (7) - (e) Give three 'poor performance signals' of an instrument that can result in deviation from Beer's law. (3) ### Question 4 (25 marks) - (a) Differentiate between a selective detector and nonselective detector. Give an example of each type. (3) - (b) Briefly discuss the design, the regions of application and operating principles of the following types of detectors: - (i) The photomultiplier tube. - (ii) The Thermocouple. Give one major disadvantage of (ii). (15) - (c) (i) State the essential precautions that must be adhered to when using a cuvett/cell for UV Spectrophotometric measurements. Why are these steps important? (4) - (ii) Briefly describe how you would prepare a KBr pellet for IR Spectroscopic analysis of a sample. (3) ## Question 5 (25 marks) | (a) | spectro | at least one difference in the instrumental design for the following oscopic methods of analysis. | | | | | | | |------------|---|---|---------------|--|--|--|--|--| | | (1) AA | S and FES; (ii) AAS and AFS; (iii) AFS and FES. | (5) | | | | | | | (b) | Which is more sensitive to flame temperature stability, AAS or FES and why? | | | | | | | | | • | | | (5) | | | | | | | (c) | (i) | Give five advantages of ICP (Inductively Coupled Plasma) spectroscopic r | nethod
(5) | | | | | | | | (;;) | · · · · · · · · · · · · · · · · · · · | | | | | | | | | (ii) | Briefly describe the working principles of ICP. | | | | | | | | | | | | | | | | | | 0 4 | | | | | | | | | | Quest | 10n b (2 | 25 marks) | | | | | | | | (a) | For the 'Hollow Cathode Lamp' of an Atomic Absorption Spectrophotometer: | | | | | | | | | ` / | (i) | | | | | | | | | | | | (5) | | | | | | | | (ii) | Briefly describe its working principles. | (6) | | | | | | | | (iii) | What are the disadvantages associated with the use of a multi-element | | | | | | | | | | Cathode Lamp'? | (2) | | | | | | | (b) | For the Electrothermal Atomic Absorption Spectrophotometer (EAAS): | | | | | | | | | (-) | (i) | List three of its advantages over the Flame AAS. | (3) | | | | | | | | (ii) | Discuss the stages involved in the atomization of a sample when us method. | ing this (7) | | | | | | | | (iii) | Account for the use of a 'Matrix Modifier' during analysis involving the | e use of | | | | | | | | | this method. | (2) | | | | | | | | | | | | | | | | | | Quantity | Symbol | Value | General data and fundamental | | | |---|----------------------------|--|---|--|--|--| | | Speed of lights | c ~ - | 2.997 924 58 × 10° m s ⁻¹ | | | | | | Elementary | | | constants: | | | | | Faraday
constant | F = eNA | 9.5485 × 10° C mol ⁻¹ | | | | | | Boltzmann
constant | k | 1.383 66 × 10 ⁻¹³ J K ⁻¹ | | | | | | Gas constant | $R = kN_A$ | 8.314 51 J K ⁻¹ mol ⁻¹ | • | | | | | | • | 8.205 78 × 10 ⁻²
dm ² atm K ⁻¹ mol ² | -1 | | | | | | | 62.364 L Tarr K-1 mol-1 | • | | | | | Planck constant | h | 6.526 D8 × 10-34 J s | | | | | | | $\dot{n} = \hbar/2\pi$ | 1.054'57 × 10 ⁻³⁴ J s | | | | | | Avogadro
constant | Ni | 6.022 14 × 10 ²³ mol ⁻¹ | | | | | | Atomic mass unit | ű | 1.660 54 × 10 ⁻²⁷ kg | | | | | | Mass of electron | m. | 9.109 39 × 10 ⁻³¹ kg | | | | | _ | proton | .m | - 1.572-52 × 10 ⁻²⁷ kg | | | | | | neutron | m, | 1.574 93 × 10 ⁻²⁷ kg | | | | | _ | Vacuum
permeability† | . Fo | 4 x × 10-7 J s² C-2 m-1 | | | | | | permeability | | 4x × 10-7 T2 J-1 m2 | | | | | | Vacuum
permittivity | $z_0 = 1/c^2 \mu_0$ | 8.854 19 × 10-12 J=1 C2 m-1 | | | | | | | 4πε0 | 1.112.65 × 10-19 J-1 C3 m-1 | in the contract of contrac | | | | | Sohr magneton | μ ₈ = efi/2m, | 9.274 02 × 10 ⁻¹⁴ J T ⁻¹ | | | | | | Nuclear
magneton | $\mu_{\rm H}=e\hbar/2m_{\rm p}$ | 5.050 79 × 10127 UTF | | | | | | Electron g value | g. _. | 3.002 32. | | | | | | Bonr radius | $a_2 = 4\pi \epsilon_0 h^2/m$ | . 5.291 77 × 10 ⁻¹¹ m | - | | | | | Rydberg
constant | $R_{\bullet} = m_{\bullet} s^{\bullet} / 8h^{2}$ | | • | | | | | Fine structure constant | $\alpha = \mu_0 e^2 c/2h$ | 7.297 35 × 10 ⁻³ | | | | | | Gravitational | G | 5.672 59 × 10 ⁻¹¹ N m ² kg ⁻ | , | | | | | Standard 1 | g | 9,806 65,73,273 | | | | | | acceleration of free fall? | 1 | | † Exact (defined) values | | | | | f o | h | | O Destina | | | | | | пμп | | G Prefixes | | | | | • | m craim casa C | | giga | | | | • | ייסני "נַבְּפני | 107, 107, 10 | 731072 1071 103 _ 106 | 103 | | | . # PERIODIC TABLE OF ELEMENTS | * | 7 6 | 5 | <u></u> | | 2 | rentobs | |--|---|--|------------------------|----------------------|-------------------------------------|----------------------| | anthauide Series *Actinide Series | # # B # B # B # B # B # B # B # B # B # | 85.468
Rb
J7 | 61
X
86076E | 22.990
Na
11 | 6.941
Li
3 | NDG 1 | | e Series
Series | Ba
56
226.03
Ra
88 | 87.62
Sr
38 | 40.078
Ca
20 | 24.305
Mg
12 | 9,012
Be | ll A | | | *La
57
(227)
**Ac
89 | 88.906
Y
90 | 44.956
Sc
21 | | | 3 | | 140.12
Ce
58
232.04
Th
90 | 178.49
1117
72
(261)
184
104 | 91.224
Zr
40 | 47,88
Ti | | | IVII 4 | | 140.91
Pr
59
231.04
Pa
91 | 73
73
74
75
105 | 92.906
Nb | 50.942
V
23 | | | VII S | | 144.24
Nd
60
218.01
U
92 · | 74
(263)
Unih | 95,94
Mo
42 | 51.996
Cr
24 | TIVA | | 6 | | 144.24 (145) 150.36 151.96 157.25 158.93 162.30 16 | 75
(262)
Ums | 98.907
Tc | 54.938
Mn
25 | TIVANSITION ELEMENTS | | 1 VIII | | 150.36
Sm
62
(244)
Pu
94 | Os
76
(265)
Uno | | 55.847
Fe
26 | | | | | 151.96
Eu
63
(243)
Ain
95 | 192.22
117
77
(266)
Une | | 7 58.933
Co
27 | TREME | | GROUPS
9
VIIII | | 157.25
Gd
64
(247)
Cm
96 | 95.08
Pt
78
(267)
Uun | | 3 58.69
Ni
28 | S | Atonic mass
Symbol
Atomic No. | | | 158.93
Tb
65
65
(247)
Bk
97 | Au 79 | - | 21.
C1.
85.03 | | | 10 | | 162.50
Dy
66
(251)
Ct
98 | 11g
80 | | 6 63.39
Z 11 | | | 4 | | 164.93
1Ho
67
(252)
Es
99 | 9 204.38
111
81 | | 9 69.723
Ga | 26.982
Al | | | | 167.26
Er
68
(257)
Fm
100 | 2072
Pb
82 | | | | = | 13 | | 6 168.93
Tim
69
(258)
Md | 2 208.98
Bi
83 | | | 86 | 12,011 14
C
6 | 14
1VA | | 3 173.04
Yb
70
70
(259)
102 | 98 (209)
Po
84 | | 74.922 74
As S | 30.974 3:
P
15 | N 7 | V _A | | M 74.97
Lu
71
(260)
Lr
103 | | | 78.96 79
Se 1 | 32.06 3:
S
16 | 8
O
1 66651 | VIA VIA | | 97 | 85 A B | | 79.904 8
Br
35 | 35.453
Q2 | 18,998 2
F
9 | | | | (222)
Rn
86 | 31.29
Xe | Kr. | 39,948
Ar
18 | 20 LB0 | VIIIA
(Junt
He |