

UNIVERSITY OF SWAZILAND

Faculty of Health Sciences

DIPLOMA IN ENVIRONMENTAL HEALTH

SUPPLEMENTARY EXAMINATION PAPER 2010/2011

TITLE OF PAPER

ALGEBRA FOR HEALTH SCIENCES

COURSE TITLE

HSM 111

DURATION

2 HOURS

MARKS

80

INSTRUCTIONS

READ QUESTIONS & INSTRUCTIONS

CAREFULLY

:

ANSWER ANY FOUR (4) QUESTIONS

:

EACH QUESTION CARRIES 20 MARKS

:

WRITE NEATLY & CLEARLY

.

SHOW ALL YOUR WORKING

•

NO PAPER SHOULD BE BROUGHT INTO NOR OUT OF THE EXAMINATION ROOM

BEGIN EACH QUESTION ON A SEPARATE

SHEET OF PAPER

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION IS GRANTED BY THE INVIGILATOR

QUESTION 1

1. (a) Solve each of the following equations for x

i. $3^{3x} = 81$

[5 marks]

ii. $\log_2(x+6) = 2$

[5 marks]

(b) Find all the roots of the following polynomial.

$$x^3 - 5x^2 - 2x + 24 = 0$$

[10 marks]

QUESTION 2

2. (a) Prove the trigonometric identity

$$\tan A + \cot A = \sec A \csc A$$

[5 marks]

(b) Solve the trigonometric equation

$$2\sin^2 x - \sin x - 1 = 0$$

giving all solutions between 0° and 360° .

[5 marks]

(c) The fourth term of an A.P. is 14 and the ninth term is 34. Find the thirteenth term.

1 114 016 0111 0001011 001111

[5 marks]

(d) Find the sum of the series $3+7+11+\ldots+123$

[5 marks]

QUESTION 3

 (a) Find the centre and radius of the circle described by the equation

[7 marks]

$$x^2 + y^2 - 4x + 2y + 1 = 0$$

- (b) Given the points A = (-3,4) and B = (1,3). Find the following;
 - i. The equation of the line passing through A and B.

[7 marks]

ii. The equation of the circle with centre A and passing through the point B.

[6 marks]

QUESTION 4

4. (a) Expand and simplify $(3x^2 + 2y)^5$

[9 marks]

(b) Find the 20th term of the geometric progression 2, 10, 50, 250,....

[6 marks]

(c) Convert 1.414141... into an equivalent common fraction

[5 marks]

QUESTION 5

- 5. A scientist starts with 100 bacteria in an experiment. After 5 days, she discovers that the population has grown to 350. Given that the population after time t days is governed by the formula, $P = P_0 e^{kt}$ where P_0 is the initial population. k is the growth rate.
 - (a) Prove that the growth rate k = 0.25055.

[7 marks]

(b) Find the bacterial population after 15 days.

[6 marks]

(c) After how many days will the population reach 1000?

[7 marks]

QUESTION 6

6. (a) Use the synthetic division method to divide

$$x^5 - 3x^3 + 2x^2 - 3x + 5$$
 by $x + 2$

[6 marks]

(b) Use the long division method to divide

$$x^6 + 7x^4 + 6x^2 - 6x - 10$$
 by $x^2 + 1$

[6 marks]

- (c) How long will it take E2900 to grow to E5900 if the annual rate of interest is 16.5% and the interest is compounded monthly? [4 marks]
- (d) At what interest rate (compounded annually) will a sum of E4000 grow to E6000 in 5 years? [4 marks]

QUESTION 7

7. (a) If the matrices A and B be given by

$$A = \left(\begin{array}{cc} 6 & 5 \\ 3 & 1 \end{array}\right) \qquad , \qquad B = \left(\begin{array}{cc} 1 & 3 \\ 3 & 1 \end{array}\right)$$

calculate the following

i. A^T

[3 marks]

ii. $A^T B$

[5 marks]

(b) Use Cramer's rule to solve the following system of equations

$$2x_1 + x_2 - x_3 = 5$$

$$3x_1 - 2x_2 + 2x_3 = -3$$

$$x_1 - 3x_2 - 3x_3 = -2$$

[12 marks]

END OF EXAMINATION