UNIVERSITY OF SWAZILAND DIPLOMA IN ENVIRONMENTAL HEALTH SCIENCE MAIN EXAMINATION PAPER 2010

TITLE OF PAPER

CHEMISTRY FOR HEALTH

SCIENCES

COURSE CODE

HSC 106

TIME

3 HOURS

TOTAL MARKS

100 MARKS

INSTRUCTIONS

THIS QUESTION PAPER HAS

SEVEN (7) QUESTIONS

: ANSWER FOUR (4) QUESTIONS

ONLY

: EACH QUESTION IS 25 MARKS

: A PERIODIC TABLE AND DATA SHEETS ARE PROVIDED WITH

THIS EXAMINATION PAPER

: NO FORM OF ANY PAPER SHOULD BE BROUGHT INTO NOR TAKEN OUT OF THE

EXAMINATION ROOM

BEGIN THE ANSWER TO EACH

QUESTION ON A SEPARATE

SHEET OF PAPER

: ALL CALCULATIONS/WORKOUT

DETAILS SHOULD BE SUBMITTED WITH YOUR

ANSWER SHEET(S)

DO NOT OPEN THIS EXAMINATION PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1 [25 MARKS]

a)	What does SIU stand for? [2]			
b)	Give the SI units for the following: [5] i) Mass iii) ii) Force iv) v) Frequency		_	
c)	, ,	? [5] ci, d o, k	v)	micro, μ
d)	Express the following in scientific notati i) 145 000 kg ii) 0.000 000 43 K	on: [2]		
e)	Convert the following: [6] i) 1.02 kg	iv) v) vi)	20 oz/gal	npulse/sec g/L m $1 \text{ oz} = 28.4 \text{ g}$ $6.023x10^{23} = 1 \text{mole}$
f)	Urine of a patient has a normal density of i) What will be the weight in kilogrii) What would be its specific gravit Express your answers in the right number	rams of a cy?[2]	250 ml sample	of Urine. [3]
<u>QUE</u>	STION 2 [25 MARKS]			
a)	Write short notes explaining the difference i) Accuracy and precision ii) Systematic and random errors	es betwe [4] [4]	en the following	g pairs:
b)	The following weights of oils drops supplements: 20 g, 21 000 mg, 0.01980 l. Calculate the total mass of the oil drops Express your answer to the correct number of the correct	kg, 21 g a	and 0.2010 x 10	² g ered. [2]
c)	The following injections of a drug w (Mlamuli) using a graduated syringe and 3.0 ml, 2.7 ml			

- i) calculate the mean volume in ml, [2]
- ii) calculate the standard deviation in ml. [2]
- iii) % Coefficient of variation [2]
- iv) Define the type and source of error is in these injections? [2]
- v) A nurse (Norman) administered the following injections to her patient 3.9 ml, 3.8 ml, 4.0 ml, 4.1 ml, 3.8 ml.
- Calculate the mean volume of these injections. [2]
- ◆ If the injections made by Mlamuli are the correct injections, calculate the % relative error for the injections made by Norman. [3]
- What types and likely sources of error is in the injections by Sonboy? [2]

•

Useful Formulae:

standard deviation
$$S_x = \sqrt{\frac{\sum_{i=1}^{N} (\bar{x} - x_i)^2}{N - 1}}$$
; mean $\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N}$

QUESTION 3 [25 MARKS]

a).	Explain the difference	between	Any	THREE	of	the	following	pairs	of	terms.	Give
	examples for each pair.										

- i). Ionic bonding and Covalent bond [5]
- ii). Co-ordinate bond and Metallic bonding [5]
- ii). Octet Rule and the periodic Law [5]
- iv). Compounds and elements [5]
- v) Hunds rule and Agfbau builing up principle [5]
- b). Draw Lewis structures or diagrams to show and name the type of bonding for each of the following: [5]
 - (i) Magnesium chloride
 - (ii) NH_{Δ}^{+}
 - (iii) H₂O
 - (iv) PCl₃+O
 - (v) CHCH
- c). i) Using Hunds rule, Agfbau builing up principle and the periodic table write the electronic configurations of **any Two** of the following elements. [2]
 - ii) Also indicate their environmental hazards and most likely source of the **Two** you have chosen in c(i): [3]

Arsenic Lead Cadmium Mercury

QUESTION 4 [25 MARKS]

- a) Write brief notes on <u>any one</u> of the following: [12]
 - (i) respiratory alkalosis
 - (ii) metabolic acidosis

Define the cause, symptoms and treatment.

- b) Define a buffer solution
- c) Give the four types of buffer systems in the body [4]
- d) A patient had the following laboratory values for his blood sample:

[3]

H	HCO ₃ -	33 mEq/L	pН	7.48
- 1	PCO ₂	46 mm Hg		

i) What is the mechanism of this acid-base imbalance, justify your answer [4]

[12]

[3]

ii) What treatment would you prescribe [2]

Question 5 [25 Marks]

- a) Write short notes on the following terms:
 - i) Electrolyte solutions
 - ii) Nonelectrolyte solutions
- b) i) Balance the following chemical equations.

$$Fe_2(SO4)_3+NH_3+H_2O \rightarrow Fe(OH)_3+(NH_4)_2SO_4$$

- ii) Using the reaction in b(i) how much (NH₄)₂SO₄ in grams would be produced from 43 g Fe₂(SO₄)₃ [5]
- iii) If the total volume of solution was 500 ml, what would be the final concentration of (NH₄)₂SO₄ in moles per L (M). [3]
- iv) Determine the final concentration of $(NH_4)_2SO_4$ H_2SO_4 in b (iii) in mEq/L. [2]

Question 6 [25 Marks]

- a) i) Define water pollution. [3]
 - ii) Give and discuss any four major sources of water pollution. [12]
 - iii) Explain any two methods of water purification. [4]
- b) Explain the difference between permanent and temporary water hardness. [6]

Question 7 [25 Marks]

- a) Name the following organic compounds [3]
 - a) CH₃CH₂CH₂OH b) CH₃CH₂C—H
 - c) $\overset{\mathrm{O}}{\longleftarrow}$ $\overset{\mathrm{O}}{\longleftarrow}$ $\overset{\mathrm{C}}{\longleftarrow}$ $\overset{\mathrm{O}}{\longleftarrow}$ $\overset{\mathrm{O}}{\longleftarrow}$ $\overset{\mathrm{C}}{\longleftarrow}$
- b) Define and describe the building blocks, general structure and biological functions of carbohydrates [6].
- c) Give and describe the four levels of protein structure. Using examples of your choice define the functions of each of the levels in body. [16]

NORMAL LABORATORY VALUES FOR BLOOD TESTS

	USUAL REFER	RENCE RANGE
Specific Gravity		1.056
Hemoglobin Count Hb		Men: 14 - 18g/dL
		Women: 12 -16 g/dL
HCO ₃ Bicarbonate	24 - 28 mmol/L	24 - 28 mEq/L
Glucose	(3.6-6.1 mmol/L)	65 - 110 mg/dL
BUN (Blood Urea Nitrogen)	2.9 - 7.1 mmol/L	8 - 20 mg/dL
Ca ⁺²	(2.1-2.6 mmol/L)	8.5 - 10.3 mg/dL
CI ⁻	(96-106 mmol/L)	96 - 106 mEq/L
Cholesterol		150 - 220 mg/dL
CO ₂	24-29 mmol/L	24-29 mEq/L
PCO_2		35-45 mmHg
PO ₂	·	80 - 100 mm Hg
pН		7.35 - 7.45
Fatty acids	0.3-0.8 mmol/L	0.3-2 mg/dL
Protein		6-8 μg/dL
Phosphate	1 - 1.5 mmol/L	3-4.5 mg/dL
ketone bodies		0.3-2 mg/dL
K ⁺	3.5-5 mmol/L	3.5 - 5 mEq/L
Na ⁺	136-145 mmol/L	136 - 145 mEq/L
Uric Acid	Men: 0.18 - 0.54	Men: 3 - 9 mg/dL
	Women: 0.15 - 0.46 mmol/L	Women: 2.5 - 7.5 mg/dL
		Children: 1.5 g/L
		(150mg/dL)

THE PERIODIC TABLE OF ELEMENTS

Group	-	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18
	IA	IIA	間	IVB	VB	VIB	VIIB		VIIB		B	B	IIIA	IVA	VA	VIA	VIIA	VIIIA
Period	1							,		3								2
	H							Z	NON-METALS	IALS								He
	1.008		-	•								,						4.003
	3	4											5	9	1	8	6	10
2	Li	Be							METALLOIDS	LOIDS	\		B	Ų	z	0	Ŀ	Ne
	6.94	9.01			-								10.81	12.01	14.01	16.00	19.00	20.18
	11	12				X	METALS						13	14	15	16	17	18
3	Na	Mg											AI	Si	۵	S	ぴ	Ar
	22.99	24.31											26.9	28.09	30.97	32.06	35.45	39.95
¢	19	20	21	22	23	24	25	56	27	28	29	30	31	32	33	34	35	36
4	×	Ca		Ï	>	C	Mn	Fe	ပိ	Z	Cn	Zn	Сa	Ge	As	Se	Br	K
	39.10	40.08	Sc	47.90	50.94	52.01	54.9	55.85	58.71	58.71	63.54	65.37	69.7	72.59	74.92	78.96	79.91	83.80
			4.30 8.													Appendix of the second		
	37	38	39	40	41	42	43	4	45	46	47	48	49	90	51	52	53	54
~	Rb	Sr	X	Zr	g	Mo	Tc	Ru	R	Pd	Ag	Cg	In	\mathbf{Sn}	\mathbf{g}	Te	H	Xe
	85.47	87.62	88.91	91.22	91.22	95.94	6.86	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
	55	99	71	72	73	74	75	92	77	28	62	08	81	82	83	84	85	98
9	Cs	Ba	Lu	Hf	Ta	>	Re	Š	ľ	Pt	Au	Hg	I	Pb	Bi	Po	At	Rn
	132.9	137.3	174.9	178.5	180.9	183.8	186.2	190.2	192.2	195.1	196.9	200.6	204.4	207.2	208.9	210	210	222
	87	88	103	104	105	106	107	108	109									
7	Fr	Ra	Lr	Unq	Unp	Unh	Uns	Uno	Une									
	223	226.0	257	ļ														

	57	58	59	09	61	62	63	49	65	99	1.9	89	69	.02
Lanthanides	La	Ç	Pr	Nd	Pm	Sm	Eu	Cq	Tp	Dy	Ho	Er	Tm	Xb
	138.9	140.1	140.9	144.2	146.9	150.9	151.3	157.3	158.9	162.5	164.9	167.3	168.9	173.0
	68	06	91	92	93	94	95	96	26	86	66	100	101	102
Actinides	Ac	Th	Pa	n	dN	Pu	Am	Cm	Bk	Ct	Es	Fm	Md	S _o
	227.0	232.0	231.0	238.0	237.1	239.1	241.1	247.1	249.1	251.1	254.1	257.1	258.1	255
M L L			1.11	1	17	$J_{i,l}$	114.		1					

Numbers below the symbol indicates the atomic masses; and the numbers above the symbol indicates the atomic numbers.

Useful Relations					General Data	***************************************	
				***************************************			, , , , , , , , , , , , , , , , , , ,
(RT) _{298.15K} =2.4789 kJ/mol	89 kJ/mol				speed of light	3	2.997 925x10 ⁸ ms ⁻¹
(RT/F) _{298·15K} =0.025 693 V	25 693 V				charge of proton	в	$1.602\ 19x10^{-19} C$
T/K: 100.15	298.15 50	100.15 298.15 500.15 1000.15	-		Faraday constant	F=Le	9.648 46x10 ⁴ C mol ⁻¹
T/Cm ⁻¹ : 69.61	207.22 347.62	17.62 695.13	AND THE REAL PROPERTY AND THE PERSON OF THE		Boltzmann constant	¥	1.380 66x10 ⁻²³ J K ⁻¹
1mmHg=133.222 N m ⁻²	2 N m ⁻²				Gas constant	R=Lk	8.314 41 J K ⁻¹ mol ⁻¹
hc/k=1.438 78x10 ⁻² m K	0^{-2} m K					AAAAAA KA	$8.20575x10^{-2} \mathrm{dm}^3 \mathrm{atm} \mathrm{K}^{-1} \mathrm{mol}^{-1}$
1atm	1 cal	1 eV		1cm ⁻¹			
=1.01325x10 ⁵ Nm ⁻²	n ⁻² =4.184 J	=1.602 189x10 ⁻¹⁹ J	x10-19 J	$=0.124 \times 10^{-3} \text{ eV}$	Planck constant	4	6.626 18x10 ⁻³⁴ Js
=760torr =1 bar		=96.485 kJ/mol = 8065.5 cm ⁻¹	mol -1	$=1.9864 \times 10^{-23}$		$\hbar = \frac{h}{2\pi}$	1.054 59x10 ⁻³⁴ Js
					Avogadro constant	L or Nav	6.022 14x10 ²³ mol ⁻¹
SI-units:	NAMES OF TAXABLE PARTY OF TAXABLE PARTY.			antika diku dalah da	Atomis mass unit	n	1.660 54x10 ⁻²⁷ kg
$IL = 1000 \text{ ml} = 1000 \text{cm}^3 = 1 \text{ dm}^3$	$10000cm^3 = 1$	dm ³			Electron mass	me	9.109 39x10 ⁻³¹ kg
1 dm = 0.1 m					Proton mass	m _p	$1.672 62 \times 10^{-27} \mathrm{kg}$
1 cal (thermochemical) = 4.184 J	mical) = 4.18	4 J			Neutron mass	$m_{\rm n}$	$1.67493x10^{-27}\mathrm{kg}$
dipole moment: 1 Debye = $3.335 64 \times 10^{-30}$ C m	1 Debye = 3	335 64x10 ⁻³⁰ (Cm		Vacuum permittivity	$\varepsilon_{o} = \mu_{o}^{-1} c^{-2}$	$8.854 188 \times 10^{-12} \text{ J}^{-1} \text{ C}^2 \text{ m}^{-1}$
force: $IN=IJ m^{-I} = Ikgms^{-2} = 10^5$ dyne	$= Ikgms^{-2} = 1$	0 ⁵ dyne pres	ssure: IPa	pressure: $IPa=INm^{-2}=1 \text{ Jm}^{-3}$	Vacuum permeability	'n	$4\pi x 10^{-7} \text{ Js}^2 \text{C}^{-2} \text{ m}^{-1}$
$IJ = I Nm$ power: $1W = 1J s^{-1}$	1 S-1	od	potential: 1	$1V = 1 J C^{-1}$	Bohr magneton	$\mu_B = \frac{e\hbar}{2m_e}$	$9.274~02$ x $10^{-24}~\mathrm{JT}^{-1}$
magnetic flux: 1T=1Vsm ⁻² =1JCsm ⁻²	r=1Vsm ⁻² =1J		current: 14	1A=1Cs ⁻¹	Nuclear magneton	$\mu_{N} = \frac{e\hbar}{2m_{p}}$	5.05079x10 ⁻²⁷ JT ⁻¹
Prefixes:	NAMES OF THE PERSONS ASSESSED.				Gravitational constant	Ð	$6.67259 \mathrm{x} 10^{-11} \mathrm{Nm}^2 \mathrm{kg}^{-2}$
n d	m m	p o	k	M G	Gravitational	50	9.80665 ms ⁻²
0	o milli	centi deci	kilo	ga	acceleration		
10-12 10-9 1	10-6 10-3	10^{-2} 10^{-1}	103	106	Bohr radius	~	5 201 77×10 ⁻¹¹ m