

UNIVERSITY OF SWAZILAND

Faculty of Health Science

Department of Environmental Health Sciences

Main Examination 2010

Title of paper:

INSTRUMENTAL METHODS FOR

ENVIRONMENTAL ANALYSIS 1

Course code:

EHS 573

Time allowed:

2 hours

Marks allocation: 100 Marks

Instructions:

- 1) Write neatly and clearly
- 2) Answer ANY FOUR (4) questions
- 3) Each question carries 25 marks
- 4) Begin each question in a separate sheet of paper
- 5) A periodic table and other useful data has been provided

This paper is not to be opened until the invigilator has granted permission

Question 1(25 marks)

- (a) Distinguish between classical and instrumental methods of analysis. [2] (b) What are the unique advantages of instrumental methods of analysis over the classical methods? [4] (c) List the principal classes of chemical instrumentation. Give two specific examples of instrumental techniques from each principal class given. (d) Using a labeled diagram, show the basic components of an instrument for chemical/environmental analysis. Discuss the functions of any one of the components and give an example in named equipment. [8] (e) List the salient performance characteristics of an instrument for environmental analysis. [5] Question 2 (25 marks) (a) Define the following terms: 'Transmittance' and 'Absorbance'. Obtain a relationship between the two of them. [3] (b) Discuss very briefly, the effects of a medium's refractive index on the wavelength, velocity and frequency of a radiation passing through the medium. [3] [c] The wavelength of the sodium D line is 589 nm. Calculate its frequency, wave-number and energy. (i)
 - (ii) Suppose another line is observed at a wavelength of 450nm. Is this line of a higher energy than the sodium D line (at 589 nm)? [11]
- (d) A biological sample with an active ingredient, X (F.W. = 270), has a molar absorptivity, ∈, of 703 M⁻¹cm⁻¹ at a wavelength of 262nm. A given amount of the sample was dissolved with water in a 5L volumetric flask and then made to the mark. A 1.00-cm cell was used to measure the absorbance of the solution at 262nm,and a reading of 0.275 was obtained. Calculate the amount of X (in grammes), present in the sample. [8]

Question 3 (25 marks)

- (a) What is a spectrophotometer? State four of its basic components and their functions respectively. [8]
- (b) What is the requirement for a cell material before it can be used for a particular

	spect	ral region?			[1]	
(c)	Give (i)	two examples of mate UV & Visible;	erials gen	nerally used for each of the fol IR	lowing region [4]	ns:
(d)	In res	spect of 'A Mull' and	'A KBr I	Pellet' used during spectrosco	pic analysis:	
	(i)	State the nature of s spectral regions of a		for which they are used and the on.	eir respective [2]	;
	(ii)	Briefly describe how	w they ar	re prepared.	[6]	
(e)				ry measures that need be taken pic analysis? Why are these n		
Ques	stion 4 ((25 marks)				
(a)	What i	s a monochromator?			[2]	
(b)		pectrophotometer, list pective functions of ea		ponents of a monochromator conent given.	system and st [7]	ate
(c)			ectral reg	zions, suggest an appropriate r	nonocromato	r
	(i) V	material : isible (ii) UV n appropriate reason f	(iii) I or your c		[4]	
(d)		_		ntages of "diffraction gratings nochromators for spectrophot		
(e) (i	-	ain the term 'dispersion ciples of a prism as a r	_	rism'. Hence, briefly describe omator.	the working	
(ii) List	the factors that increas	se the res	colution of a 'prism' and 'diffr	action grating [8]	gs'
Ques	stion 5	(25 marks)				
(a)	_	in the term 'source' woles and state four of i	_	ds to atomic spectroscopic me soals.	ethods. Give t [7]	wo
(b)	Discu	ss the major limitatior	s of aton	nic spectroscopic methods.	[2]	

(c)	For	the flame atomic absorption spectrophotometry (FAAS):	
	(i)	What analyte property is measured and in what units?	[2]
	(ii)	Draw and label a schematic diagram of the 'atomic absorption	
		spectrophotometer'	[4]
	(iii)	Briefly describe its working principles	[8]
	(iv)	Give four examples of environmental pollutants it can be used to analy	ze.
			[2]
Que	estion	6(25 marks)	
		w cathode lamp is a vital primary source of radiation in atomic absorption try. Discuss:	n
(a)		eatures as a sharp line radiation source.	[3]
(b)	Its st	tructure (configuration) plus a schematic diagram of it.	[7]
(c)	Its w	vorking principles.	[10]
(d)	The	composition and short comings of multielement hollow cathode lamps.	[6]
(e)	The	essence of the cylindrical structure of the cathode tube.	[2]

Quantity	Symbol	Value	General data and
Speed of light?	c	2.997 924 58 × 10 ^a m s ⁻¹	fundamental
Elementary———— charge		7.:1:602;177 × 10~19 C	constants
Faraday constant	$F = eN_A$	9.6485 × 10 ⁴ C mol ⁻¹	
Boltzmann constant	k	1.380 66 × 10 ⁻²³ J K ⁻¹	
Gas constant	$R = kN_{A}$	8.31451 J K ⁻¹ mol ⁻¹	•
•		3.205 78 × 10 ⁻² dm³ atm K ⁻¹ mol	-1 .
		62.364 L Torr K ⁻¹ mol ⁻¹	
Planck constant	ħ	$6.62608 \times 10^{-34} \text{ J s}$	
•	$\dot{n} = h/2\pi$	1.054 57 × 10 ⁻³⁴ J s	•
Avogadro constant	NA	$6.02214\times10^{23}\mathrm{mol^{-1}}$	
Atomic mass unit	u ·	$1.66054\times10^{-27}\mathrm{kg}$	
Mass of electron	m•	$9.10939 \times 10^{-31} \text{ kg}$	
proton	.m ₂ .	$1.672-62 \times 10^{-27}$ kg	
neutron	m ₂ · · - · · -	1.674 93 × 10 ⁻²⁷ kg	
Vacuum permeability†	μο	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$	
gottilogotiity ($4\pi \times 10^{-7} \mathrm{T}^2 \mathrm{J}^{-1} \mathrm{m}^3$	
Vacuum permittivity	$\varepsilon_0 = 1/c^2 \mu_0$	8.854 19 × 10 ⁻¹² J ⁻¹ C ² m ⁻¹	
	$4\pi\varepsilon_0$	$1.112.65 \times 10^{-10} \text{ J}^{-1} \text{ C}^2 \text{ m}^{-1}$	
Bohr magneton	$\mu_{\rm B} = e fi/2m_{\bullet}$	$9.27402 \times 10^{-24} \text{ J T}^{-1}$	
Nuclear magneton	$\mu_{N} = e \hbar/2 m_{p}$	$5.05079 \times 10^{-27} \text{ J T}^{-1}$	
Electron g value	G.	2.002 32.	
Bohr radius	$a_2 = 4\pi \epsilon_2 \hbar^2/\pi$	7.4 5.29177 × 10 ⁻¹¹ m	•
Rydberg constant	R_ = m,e ¹ /8h	$^{3}c:$ 1.097 37 × 10 5 cm $^{-1}$	•
Fine structure constant	$\alpha = \mu_0 e^2 c/2h$	7.29735×10^{-3}	
Gravitational constant	G	$6.67259 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$	
Standard tacceleration	. g	9.806.65 ro.s ⁻²	
of free fall;			t Exact (defined) values
f p	п μ -г	m cdk M	G Prefixes
femto pico	nano micro m	illi centi deci kilo mega g	giga
10-15 10-12	10-9 10-6 10	0-1 _ 10-2 10-1 101 106	10°

PERIODIC TABLE OF ELEMENTS

	18	VIIIV	4.00.1	Πc	2.	20.180	$N_{\mathbf{c}}$	01	39.948	Ąι	18	83.80	Kr	36	131.29	Xc	54	(222)	Rn	86				
	17	VIIV				18.998	<u>:-</u>	6	35.453	Ü	17	79.904	Br	35	126.90		53	(210)	Λt	85				
	91	۸۱۸			-	15.999	0	8	32.06	S	91	78.96	Se	34	127.60	Te	52	(209)	Po	84				
	15	۸۸				14.007	Z	7	30.974	۵	15	74.922	As	33	121.75	Sb	51	208.98	Bi.	83				
	14	۱۷۸				12.011	ပ	9	28.086	Si	4	72.61	ပိ	32	118.71	Sn	20	207.2	Pb	82				
	13	۷Ш				118.01	2 A B	~ •	26.982	ΥI	13	69.723	5	31	114.82	In	49	204.38	TI	81				
	12	=				Atomic mass -	Symbol -	Atomic No.				65.39	Zn	30	112.41	Cq	48	200.59	I·Ig	80				
	=	E				Atomi	Syn	Atom				63.546	Cu	29	107.87	Αg	47	196.97	γn	79				
	10											58.69	ž	28	106.42	Pd	46	195.08	Pt	78	(267)	Uun	110	
GROUPS	6	VIIIB	:							FNTS		58.933	ပိ	27	102.91	Rh	45	192.22	Ir	77	(592)	Une	109	
9	∞		:							TON FLEMENTS		55.847	Fe	26	101.07	Ru	44	190.2	Os	9/	(265)	Uno	108	
	7	NIII)								SITION		54.938	Mn	25	98.907	Tc	43	186.21	Re	75	(292)	Uns	107	
	9	VIB								TRANSITI		51.996	Cr	24	95.94	Mo	42	183.85	⋧	74	(263)	Unh	901	
	5	VB										50.942	>	23	92.906	ź	41	180.95	Тa	73	(292)	На	105	
	4	IVB										47.88	Ξ	22	91.224	Zr	40	178.49	III	72	(261)	Rf	104	
	3	=										44.956	Sc	21	88.906	>	39	138.91	*La	57	(227)	**Ac	89	
	2	Y:				9.012	Be	4	24.305	Mg	12	.40.078	C	70	87.62	Sr	38	137.33	Ba	99	226.03	Ra	88	
	_	<u></u>	1.008	=	_	6.941	<u>.:</u>	٣	22.990	Na	=	39.098	×	61	85.468	KP	37	132.91	Cs	55	223	F.	87	
		PERIODS		-	•		2			"	,		4			ν.			<u>۔</u>			. 7		

140.12	140.12 140.91 144.2	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
ಲ	Pr	PN	Pm	Sm	Eu	рS	Tb	Dy	Ho	Ē.	Tm	Λp	Lu
58	. 59	09	19	62	63	64	65	99	19	89	69	70	7.1
232.04	232.04 231.04 238.03	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
Th	Pa	٦	aN	Pu	Am	Сш	Bk	CC	Es	Fm	PW.	Š	Ĺ
06	91	92	93	94	95	96	. 97	86	66	100	101	102	103
				of the transfer of the line control of the	Cological	Trini buo	the long	Holf holf	lifo				

*Lanthanide Series

**Actinide Series

() indicates the mass number of the isotope with the longest half-life.