UNIVERSITY OF SWAZILAND **Faculty of Health Sciences Department of Environmental Health Sciences**

Diploma in Environmental Health Sciences

MAIN EXAMINATION PAPER MAY 2011

TITLE OF PAPER : URBAN WATER TREATMENT TECHNOLOGY

COURSE CODE

: EHS:213

DURATION

: 2 HOURS

MARKS

: 75

INSTRUCTIONS

: THERE ARE FIVE QUESTIONS IN THIS EXAM

: ANSWER ALL THE QUESTIONS

: EACH QUESTION CARRIES A MAXIUM MARK OF 15

NO PAPER SHOULD BE BROUGHT IN TO OR OUT OF THE

EXAMINATION ROOM

<u>Qu</u>	uestion One (15 Ma	arks)
A)	Explain the difference	e between (i) Water borne, (ii) Water washed and (iii) Water -based
	diseases	[5 Marks]
B)	Classify the followin	g diseases as either i) Water borne, ii) Water washed, iii) Water based
	or iv) Water related	insect vector diseases:
	a) Cholera	
	b) Salmonella	
	c) Malaria	
	d) Meningitis	
	e) Schistosom	iasis[5 Marks]
-		
C)		are caused by the presence of each of the following chemicals in
		[5 Marks]
		ess concentration of iron and manganese
	ii. Lov	v PH of water
	iii. Exc	ess concentration of fluoride
	iv. Exc	ess concentration of nitrate.
Qu	uestion Two (15 Ma	<u>irks)</u>
A) I	Describe how the follo	owing factors may or may not influence the rate of settlement of
d	discrete particles in rea	al sedimentation tanks[5 Marks]
	i. Wa	ater temperature
	ii. Wi	nd
	iii. Inl	et and outlet conditions
	iv. De	pth of tank.
B) I	Describe the principal	uses of aeration in water treatment plants[5 Marks]
C)	Sketch the plan and s	ection of a sedimentation tank unit indicating the important

parts.....[5 Marks]

Question Three (15 Marks)

A coagulation process is to be designed for a water treatment with a flow of 0.1 m³/sec. A jar test done on a 1.5 litre sample indicated 6ml and 8ml dosages of a 1% alum solution gave equally good lowest turbidity. The alum solution tank in the treatment plant is to be 1.5m long and 1.0m wide and can drain the solution up to a depth of 20cm. the solution concentration is to be 10%.

A)	Calculate the weight of alum in kilo grams that is needed to make-up the required solution				
	in each 8 hours shift				
B)	Calculate the depth to which the tank should be filled in order to provide sufficient				
	coagulant for one eight hour shift[4 Marks]				
C)	At regular intervals the flow rate of coagulant is checked by noting the time for a 2 liter				
	container to be filled with the solution. Calculate the time that should be taken to fill a 2				
	liter measuring cylinder with a coagulant[4 Marks]				

Question Four (15 Marks)

- A) Which of the following cannot be considered as an operational fault of a slow sand filter?
 - i. Not cleaning frequently enough
 - ii. Not refilling from the top
 - iii. Not allowing sufficient time to mature
- B) List Five applications of a rapid sand filter......[5 Marks]

Question Five (15 marks)

The chlorine residuals measured when various dosages of chlorine were added to treated water are given below. Determine

\mathbf{A} .	The breakpoint chlorine demand		8 Marks]
----------------	--------------------------------	--	----------

В.	The chlorine dosage required to obtain a residual of 0.75 mg/lit free available	
	chlorine	[arks]

Dosage, mg/lit	0.1	0.5	1	1.5	2	2.5	3
Residual mg/lit	0.0	0.3	0.6	0.35	0.35	0.8	1.3