University of Swaziland

Final Examination, December 2008

Dip. Env. Health I, Dip. Env. Health IV

Title of Paper : Algebra for Health Sciences

Course Number

: HSM111

Time Allowed

: Two (2) hours

Instructions

- 1. This paper consists of SIX questions.
- 2. Each question is worth 25%.
- 3. Answer ANY FOUR questions.
- 4. Show all your working.

This paper should not be opened until permission has BEEN GIVEN BY THE INVIGILATOR.

Question 1

(a) Express

$$\log\left(\frac{a^4b^2}{c^6}\right)^{-\frac{1}{2}}$$

in terms of $\log a$, $\log b$ and $\log c$.

[4 marks]

- (b) Find the term involving x in the expansion of $\left(2x \frac{1}{\sqrt{x}}\right)^{16}$.

 [5 marks]
- (c) Find all real roots of $x^3 + x^2 4x + 4 = 0$. [10 marks]
- (d) Find the centre and radius of the circle

$$x^2 + y^2 - 10x + 8y + 5 = 0.$$
 [6 marks]

Question 2

- (a) Solve for x
 - i. $4^x = 3^{1-2x}$

[4 marks]

ii. $\log_2(x+2) = 3 - \log_2 x$

[4 marks]

- (b) Find the first five terms of the expansion of $\left(1-2x^2\right)^{\frac{1}{2}}$. [8 marks]
- (c) Find 3 numbers in arithmetic progression such that their sum is 15 and their product is 80. [9 marks]

Question 3

(a) The population of a city is given by

$$P(t) = 45,000e^{0.03t}$$

where t is the number of years from the year 2000.

- i. Find the population in the year 2010. [3 marks]
- ii. When will the population be double that in 2000? [7 marks]
- (b) Use Cramer's rule to solve for x, y and z, given

$$x + y - z = 7$$

 $4x - y + 5z = -4$
 $2x + 2y - 3z = 0$.

[15 marks]

Question 4

- (a) Given that $\sin \theta = \frac{3}{5}$ and that θ is in QII, find
 - i. $\sin 2\theta$

[5 marks]

ii. $\cos 2\theta$

[5 marks]

Hence state the quadrant in which 2θ lies. [2 marks]

(b) Evaluate

$$\frac{x^4 - x^3 + x + 2}{x^2 - 2}.$$
 [8 marks]

(c) Find the value of the infinite sum

$$18 - 12 + 8 - \cdots$$

[5 marks]

Question 5

(a) Use the quadratic formula to solve

$$x^2 - 2x + 10 = 0.$$

[6 marks]

(b) Evaluate

$$\frac{2+2i}{(1-i)^2} + \frac{2i}{i-1}$$

and express your answer in the form a + ib. [7 marks]

(c) Find the value of the finite sum

$$1-2+2^2-2^3+\cdots+2^{10}$$
.

[6 marks]

(d) Prove

$$\frac{\sec A + \csc A}{\tan A + \cot A} = \sin A + \cos A.$$
 [6 marks]

Question 6

(a) Evaluate

$$\begin{vmatrix} 4 & 5 & 0 & -8 \\ 2 & -3 & 4 & 0 \\ 3 & 0 & -2 & 0 \\ 0 & 2 & 0 & -6 \end{vmatrix}.$$

[12 marks]

(b) Use de Moivre's theorem to evaluate

$$\left(\sqrt{3}-i\right)^6$$

- and express your answer in the form a + ib. [8 marks]
- (c) Use synthetic division to evaluate

$$(x^4 - 3x^2 + 2x + 10) \div (x + 4)$$
. [5 marks]