

UNIVERSITY OF SWAZILAND

Faculty of Health Sciences

Diploma in Environmental Health /General Nursing Science Supplementary Examination 2009

Title of paper: CHEMISTRY FOR HEALTH SCIENCES

Course code: HSC 106

Time allowed: 3 hours

Marks allocation: 100 Marks

Instructions:

- 1) Read the questions and instructions carefully
- 2) Answer ALL questions
- 3) Each question is 25 marks
- 4) A Periodic Table and Data Sheets are provided this paper.
- 5) All calculations/workout details should be submitted with your answer sheet (s).
- 6) Begin each question on a separate sheet of paper

This paper is not to be opened until the invigilator has granted permission

QUESTION 1 [25 MARKS]

Convert the following figures to the units indicated: [8] a)

> 92 pulse/min.....pulses/sec i)

ii) 35 mL.....L

iii)

 $30~\mu g$mg $3.2x10^{24}$ atoms....moles iv)

Recall: 1 minute = 60 secs1 gal = 3.8 L1 in. = 2.54 cm

1 oz = 28.4 g $6.023 \times 10^{23} = 1 \text{mole}$

b) Write short notes explaining the differences between Systematic and random errors. [8]

Give the correct reading of the following measurement in the form $x\pm S_x$. [3] c)

d)

- i) Calculate the degree of precision as a percentage coefficient of variation (or percentage relative standard deviation, %RSD) in your reading. [1]
- ii) Calculate the percentage relative error (% RE) in the reading by using the difference between the reading without any correction and the reading after correction. [1]
- iii) Based on the % RSD and the % RE would you consider readings from this instrument reliable, explain. [2]
- iv) What are the two sources of error in this device ? [2]

Useful Formulae:

standard deviation
$$S_x = \sqrt{\frac{\sum_{i=1}^{N} (\bar{x} - x_i)^2}{N-1}}$$
; mean $\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N}$

QUESTION 2 [25 MARKS]

- a). Explain the difference between the following pairs of terms. Give examples for each pairs.
- i). Ionic bonding and Covalent bond [6]
- ii) Hunds rule and Agfbau builing up principle [6]
- b). Draw Lewis structures or diagrams to show and name the type of bonding for each of the following:
 - (i) calcium chloride [2]
 - (ii) NH_4^+ [2]
- c) i) Using Hunds rule, Agfbau builing up principle and the periodic table write the electronic configurations of **any Two** of the following elements. [5]
 - ii) Also indicate the role in health and the most likely dietary sources of the **Two** you have chosen in c(i): [4]

Iodine Iron Calcium

QUESTION 3 [25 MARKS]

- a) Define the term "Empirical formula". [6]
- b) Give three ways by which the empirical formula may be obtained. [6]
- c) 6.853 mg of a sex hormone containing C, H and O was burned to determine its molecular formula. On burning 20.08 mg CO_2 and 5.023 mg of H_2O were obtained. The formula weight of the substance was found to be 270 g/mol.
- i) Calculate the Empirical formula for the hormone [8]
- ii) Calculate the molecular formula for the hormone [5]

QUESTION 4 [25 MARKS]

- a) Briefly discuss any one of the following: [15]
 - i) Respiratory Alkalosis
 - ii) Metabolic Alkalosis

In your discussion include the cause, the symptoms and the treatment.

b) A 30 year old woman is admitted to Mbabane Clinic. On admission her arterial blood results were as follows:

HCO3-	28 mEq/L	pН	7.21					
Barbiturates	160 mEq/lL	PCO ₂	52 mm Hg					
Heroin	30 Meq/L	Blood ketones	positive					

- i) Using the data given diagnose the condition of the patient, giving specific reasons for your diagnoses. [6]
- ii) What treatment would you prescribe for this patient. [4]

NORMAL LABORATORY VALUES FOR BLOOD TESTS

	USUAL REFER	RENCE RANGE					
Specific Gravity		1.056					
Hemoglobin Count Hb		Men: 14 - 18g /dL					
		Women: 12 -16 g/dL					
HCO ₃ Bicarbonate	24 - 28 mmol/L	24 - 28 mEq/L					
Glucose	(3.6-6.1 mmol/L)	65 - 110 mg/dL					
BUN (Blood Urea Nitrogen)	2.9 - 7.1 mmol/L	8 - 20 mg/dL					
Ca ⁺²	(2.1-2.6 mmol/L)	8.5 - 10.3 mg/dL					
Cl	(96-106 mmol/L)	96 - 106 mEq/L					
Cholesterol		150 - 220 mg/dL					
CO_2	24-29 mmol/L	24-29 mEq/L					
PCO ₂		35-45 mmHg					
PO_2		80 - 100 mm Hg					
pН		7.35 - 7.45					
Fatty acids	0.3-0.8 mmol/L	0.3-2 mg/dL					
Protein		6-8 μg/dL					
Phosphate	1 - 1.5 mmol/L	3-4.5 mg/dL					
ketone bodies		0.3-2 mg/dL					
K ⁺	3.5-5 mmol/L	3.5 - 5 mEq/L					
Na ⁺	136-145 mmol/L	136 - 145 mEq/L					
Uric Acid	Men: 0.18 - 0.54	Men: 3 - 9 mg/dL					
	Women: 0.15 - 0.46 mmol/L	Women: 2.5 - 7.5 mg/dL					
		Children: 1.5 g/L					
		(150mg/dL)					

5.291 77x10 ⁻¹¹ m	a _o	Bohr radius	İ
		acceleration	nano micro milli centi deci
9.80665 ms ⁻²	20	Gravitational	p n m m c d k M G
6.67259x10 ⁻¹¹ Nm ² kg ⁻²	G	Gravitational constant	Prefixes:
5.05079x10 ⁻²⁷ JT ⁻¹	$\mu_{\rm N} = \frac{e\hbar}{2m_{\rm p}}$	Nuclear magneton	magnetic flux: 1T=1Vsm ⁻² =1JCsm ⁻² current: 1A=1Cs ⁻¹
9.274 02x10 ⁻²⁴ JT ⁻¹	$\mu_B = e\hbar/2m_e$	Bohr magneton	$IJ = I Nm$ power: $1W = 1J s^{-1}$ potential: $1V = 1 J C^{-1}$
$4\pi x 10^{-7} \text{ Js}^2 \text{C}^{-2} \text{ m}^{-1}$	μ_{\circ}	Vacuum permeability	force: $IN=IJ m^{-1} = Ikgms^{-2} = 10^{\circ} \text{ dyne}$ pressure: $IPa=INm^{-2} = 1 \text{Jm}^{-3}$
$8.854\ 188 \times 10^{-12} \text{J}^{-1} \text{C}^{2} \text{m}^{-1}$	$\varepsilon_{o} = \mu_{o}^{-1} c^{-2}$	Vacuum permittivity	
$1.67493 \times 10^{-27}\mathrm{kg}$	m _n	Neutron mass	1 cal (thermochemical) = 4.184 J
$1.67262 \times 10^{-27}\mathrm{kg}$	m_p	Proton mass	1 dm = 0.1 m
9.10939 x 10^{-31} kg	m _e	Electron mass	$IL = 1000 \text{ ml} = 1000 \text{ cm}^3 = I \text{ dm}^3$
1.660 54x10 ⁻²⁷ kg	u	Atomis mass unit	SI-units:
6.022 14x10 ²³ mol ⁻¹	L or N _{av}	Avogadro constant	
$1.054 59 \times 10^{-34} \text{ Js}$	$h = \frac{1}{2\pi}$		8065.5 cm ⁻¹
	h		
6.626 18x10 ⁻³⁴ Js	h	Planck constant	$1.01325 \times 10^5 \text{ Nm}^{-2}$ 4.184 J 1.602 189×10 ⁻¹⁹ J 0.124×10 ⁻³ eV
			1atm 1 cal 1 eV 1 cm ⁻¹
$8.205 75 \text{x} 10^{-2} \text{ dm}^3 \text{ atm K}^{-1} \text{ mol}^{-1}$			hc/k=1.438 78x10 ⁻² m K
8.314 41 J K ⁻¹ mol ⁻¹	R=Lk	Gas constant	1mmHg=133.222 N m ⁻²
1.380 66x10 ⁻²⁵ J K ⁻¹	k	Boltzmann constant	T/Cm ⁻¹ : 69.61 207.22 347.62 695.13
9.648 46x10 ⁴ C mol ⁻¹	F=Le	Faraday constant	T/K: 100.15 298.15 500.15 1000.15
1.602 19x10 ⁻¹⁹ C	е	charge of proton	(RT/F) _{298-15K} =0.025 693 V
2.997 925x10 ⁸ ms ⁻¹	C	speed of light	(RT) _{298·15K} =2.4789 kJ/mol
		General Data	Useful Relations

۹.

THE PERIODIC TABLE OF ELEMENTS

								7			6	`		5	1			4			w			2			_	Period		Group			
	Actinides			Lanthanides			Lanth				Fr	87	132.9	Cs	55	85.47	Rb	37		39.10	X	19	22.99	Na	11	6.94	Li	ယ	1.008	H	1	IA	-
	ides	•		ınides	•		226.0	Ra	88	137.3	Ba	56	87.62	\mathbf{Sr}	38		40.08	Ca	20	24.31	Mg	12	9.01	Ве	4				IIA	2			
							257	Lr	103	174.9	Lu	71	88.91	Y	39	44.96	Sc		21										IIIB	3			
227.0	Ac	89	138.9	La	57			Unq	104	178.5	Hf	72	91.22	Zr	40		47.90	ï	22										IVB	4			
232.0	Th	90	140.1	Ce	58			Unp	105	180.9	Ta	73	91.22	Z	41		50.94	\	23										VB	5			
231.0	Pa	91	140.9	Pr	59			Unh	106	183.8	W	74	95.94	Mo	42		52.01	$_{\mathbf{r}}$	24		ļ	~				•			VIB	6			
238.0	U	92	144.2	Nd	60			Uns	107	186.2	Re	75	98.9	Tc	43		54.9	Mn	25			METALS							VIIB	7			
237.1	N p	93	146.9	Pm	61			Uno	108	190.2	Os	76	101.1	Ru	44		55.85	Fe	26			••					-	•		8			
239.1	Pu	94	150.9	Sm	62			Une	109	192.2	\mathbf{Ir}	77	102.9	Rh	45		58.71	Co	27					METAL			NON-ME IALO		VIIIB	9			
241.1	Am	95	151.3	Eu	63					195.1	Pt	78	106.4	Pd	46		58.71	Z.	28					METALLOIDS			CIAL	<u> </u>		10			
247.1	Cm	96	157.3	Gd	64					196.9	Au	79	107.9	Ag	47		63.54	Cu	29					†			↑		IB	11			
249.1	Bk	97	158.9	Tb	65					200.6	$H_{\mathbf{g}}$	80	112.4	Cd	48		65.37	Zn	30			_							IIB	12			
251.1	Cf	98	162.5	Dy	66					204.4	Tl	81	114.8	In	49		69.7	Ga	31	26.9	A	13	10.81	В	5				IIIA	13			
254.1	Es	99	164.9	Ho	67					207.2	Pb	82	118.7	Sn	50		72.59	Ge	32	28.09	Z:	14			6				IVA	14			
257.1	Fm	100	167.3	Er	68					208.9	Bi	83	121.8	Sb	51		74.92	As	33	1000				Z					VA	15			
258.1	Md	101	168.9	Tm	69					210	Po	84	127.6	Te	52									Ô					VIA	16			
255	No	102	173.0	Yb	70					210	At	85	(A)	12.0				**						Ti.	9				VIIA	17			
						-						2.												77/				1	VI				

Numbers below the symbol indicates the atomic masses; and the numbers above the symbol indicates the atomic numbers.

SOURCE: International Union of Pure and Applied Chemistry, I mills, ed., Quantities, Units, and symbols in Physical Chemistry, Blackwell Scientific publications, Boston, 1988, pp 86-98.