UNIVERSITY OF SWAZILAND DIPLOMA IN ENVIRONMENTAL HEALTH SCIENCE FINAL EXAMINATION PAPER 2008

TITLE OF PAPER : INTEGRATED BASIC SCIENCES

COURSE CODE : HSC 106

TIME : 3 HOURS

TOTAL MARKS : 100 MARKS

INSTRUCTIONS : THIS QUESTION PAPER HAS SIX

QUESTIONS

: ANSWER FOUR QUESTIONS

ONLY

: EACH QUESTION IS 25 MARKS

: AT LEAST TWO QUESTIONS

MUST BE ANSWERED FROM

EACH SECTION.

: A PERIODIC TABLE AND DATA

SHEETS ARE PROVIDED WITH

THIS EXAMINATION PAPER

: NO FORM OF ANY PAPER

SHOULD BE BROUGHT INTO NOR TAKEN OUT OF THE

EXAMINATION ROOM

: BEGIN THE ANSWER TO EACH

QUESTION ON A SEPARATE

SHEET OF PAPER

: ALL CALCULATIONS/WORKOUT

DETAILS SHOULD BE SUBMITTED WITH YOUR

ANSWER SHEET(S)

DO NOT OPEN THIS EXAMINATION PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR

QUESTION 1 [25 MARKS]

- Convert the following figures to the units indicated: [6] a)
 - i) 4.02 kg/L g/ml
- v) 90 pulse/min.....pulses/sec
- ii) 25 fm.....m
- 20 oz/gal.....g/L vi)
- 50 000 μg..... mg iii) 4.8×10^{24} atoms.................moles iv)
- Recall: 1 in. = 2.54 cm

$$1 \text{ oz} = 28.4 \text{ g}$$

 $6.023x10^{23} = 1 \text{mole}$

- Carry out the following calculations and express each answer with the correct b) number of decimal, significant figures and units. [2]
 - i) $8.6742 \text{ g} \div 0.00371 \text{ L} =$
 - $\frac{3.41\,g 0.02310\,g}{5.2331\,ml} * 0.2051\,ml =$ ii)
- c) Write short notes explaining the differences between the following pairs:
 - Accuracy and precision i)
- [2]
- ii) Systematic and random errors
 - [2]
- precise A patient was to be given 3.231 mg of de-worming tablets. Two doctors d) Mncedisi and Siphiwesihle weighed tablets five times to get the following readings:

Mcedisi	siphiwesihle
3.851	3.217
3.314	3.193
3.791	3.208
3.014	3.226
3.152	3.301

Calculate (for both Mncedisi and Siphiwesihle):

- i) the mean [2]
- ii) Standard deviation [2]
- % Coefficient of variation [2] iii)
- % Relative error [2]
- e) Which measurements from 2(c) above are the most? [2]
 - accurate i)
 - ii) precise
- f) What are the sources of error and what appropriate action would you take to prevent the errors in 1(e) above ? [3]

Useful Formulae:

standard deviation
$$S_x = \sqrt{\frac{\sum_{i=1}^{N} (\bar{x} - x_i)^2}{N - 1}}$$
; mean $\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N}$

QUESTION 2 [25 MARKS]

- a). Explain the difference between <u>Any Two</u> of the following pairs of terms. Give examples for each pair.
- i). Ionic bonding and Covalent bond [5]
- ii). Co-ordinate bond and Metallic bonding [5]
- ii). Octet Rule and the periodic Law [5]
- iv). Compounds and elements [5]
- v) Hunds rule and Agfbau builing up principle [5]
- b). Draw Lewis structures or diagrams to show and name the type of bonding for each of the following: [3]
 - (i) H_2O
 - (ii)

$$NH_3 + BF_3 \rightarrow NH_3BF_3$$

- (iii) CHCH
- c) i) Using Hunds rule, Agfbau builing up principle and the periodic table write the electronic configurations of **any Two** of the following elements. [2]
 - ii) Also indicate their environmental hazards and most likely source of the **Two** you have chosen in c(i): [6]

Arsenic Lead Cadmium

- d) (i) Define the Daltons' Atomic Theory. In your answer, using an example of your choice, explain the flaws (problem) with this theory. [3]
 - (ii) Given that the natural abundance of oxygen isotopes: ¹⁶O is 99.76%, ¹⁷O is 0.04% and ¹⁶O is 0.20%, Calculate the relative atomic weight (in g/mole) of oxygen. [1]

Mercury

QUESTION 3 [25 MARKS]

- a) i) Define a buffer solution [2]
 - ii) Name three kinds of buffers found in the body. [6]
- b) Briefly discuss any one of the following: [8]
 - i) Respiratory acidosis
 - ii) Metabolic acidosis

In your discussion include the cause, the symptoms and the treatment.

c) A 19 year old man is admitted to hospital.. On admission his laboratory results were as follows:

Blood pressure	90/20 mm Hg	Sodium	132mmol/L
Deep respirations	35/min	Potassium	6.5mmol/L
Pulse	120/min	pН	6.75
glucose	20 mmol/l	PCO ₂	11 mm Hg
protein	100 μg/dl	Blood ketones	positive

- i) Using the data given diagnose the condition of the patient, giving specific reasons for your diagnoses. [6]
- ii) What treatment would you prescribe. [3]

Question 4 [25 Marks]

- a) Define the difference between empirical and molecular formular [6]
- b) Give three ways by which the empirical formula may be obtained. [4]
- c) 6.853 mg of a sex hormone containing C, H and O was burned to determine its molecular formula. On burning 20.08 mg CO₂ and 5.023 mg of H₂O were obtained. The formula weight of the substance was found to be 270 g/mol.
 - i) Calculate the Empirical formula for the hormone [10]
 - ii) Calculate the molecular formula for the hormone [5] [note that the unit 1 mg = 0.001 g = 1×10^{-3} g]

Question 5 [25 Marks]

ii)

iii)

a)	Given Find	that 50 g sugar reacts with 25 g oxygen in o	combustion,
	i)	the limiting reactant	[3]
	ii)	theoretical yield in grams CO ₂	[2]
	iii)	percetange yield if 5 g CO ₂ is produced.	[2]

Useful information: sugar is represented by the formular C₆H₁₂O₆

[2]

the number of oxygen atoms in 50 g sugar. [2]

b)	Using equation	s define the following term	is:
	i) Molarit	y [1]	
	ii) Normal	ity [1]	
c)	If 4.09 g H ₂	PO ₄ is dissolved in 250 ml	L solution calculate:
	i) Numbe	r of equivalents of H ₃ PO ₄ .	[2]
	ii) The No	rmality of the Solution	[2]

The molar concentration of the solution.

- d) An antacid tablet was given to a patient to relieve stomach discomfort. Given that the antacid was aluminium hydroxide, Al(OH)₃ which reacts with hydrochloric acid. How many grams acid in the stomach will 1.50 g antacid tablet neutralize ?[3]
- e) Doctor Mncedisi is instructed to prepare 250 ml of a 15 % (w/v) of an antibiotic from a 30 % (w/v) solution.
 - i) What volume of antibiotic is needed to make the required antibiotic. What volume. [3]
 - ii) of water will be added to make the required antibiotic, explain how the solution is prepared. [4]

Question 6. [25 Marks]

- a) Adenosine triphosphate (ATP) is an important substance in all living cells. A sample with mass of 0.8138 g was analysed and found to contain 0.1927 g of Carbon C, 0.02590 g of hydrogen H, 0.1124 g of Nitrogen N and 0.1491 g of phosphorus P. The remainder was oxygen. Its formula weight was determined to be 507 g/mol.
 - i) Define the difference between empirical and molecular formular [4]
 - ii) Calculate the Empirical formula (in the form $C_v H_w N_x P_y O_z$) of Adenosine triphosphate (ATP). [6]
 - iii) Calculate the Molecular formula of Adenosine triphosphate (ATP) [2]
- b) 6.853 mg of a sex hormone containing C, H and O was burned to determine its molecular formula. On burning 20.08 mg CO₂ and 5.023 mg of H₂O were obtained. The formula weight of the substance was found to be 270 g/mol.
 - iii) Calculate the Empirical formula for the hormone [10]
 - iv) Calculate the molecular formula for the hormone [3]

[note that the unit 1 mg = $0.001 \text{ g} = 1 \text{x} 10^{-3} \text{g}$]

NORMAL LABORATORY VALUES FOR BLOOD TESTS

	USUAL REFER	ENCE RANGE
Specific Gravity		1.056
Hemoglobin Count Hb		Men: 14 - 18g /dL Women: 12 -16 g/dL
HCO ₃ Bicarbonate	24 - 28 mmol/L	24 - 28 mEq/L
Glucose	(3.6-6.1 mmol/L)	65 - 110 mg/dL
BUN (Blood Urea Nitrogen)	2.9 - 7.1 mmol/L	8 - 20 mg/dL
Ca ⁺²	(2.1-2.6 mmol/L)	8.5 - 10.3 mg/dL
Cl	(96-106 mmol/L)	96 - 106 mEq/L
Cholesterol		150 - 220 mg/dL
CO ₂	24-29 mmol/L	24-29 mEq/L
PCO ₂		35-45 mmHg
PO ₂		80 - 100 mm Hg
pН		7.35 - 7.45
Fatty acids	0.3-0.8 mmol/L	0.3-2 mg/dL
Protein		6-8 μg/dL
Phosphate	1 - 1.5 mmol/L	3-4.5 mg/dL
ketone bodies		0.3-2 mg/dL
K ⁺	3.5-5 mmol/L	3.5 - 5 mEq/L
Na ⁺	136-145 mmol/L	136 - 145 mEq/L
Uric Acid	Men: 0.18 - 0.54	Men: 3 - 9 mg/dL
	Women: 0.15 - 0.46 mmol/L	Women: 2.5 - 7.5 mg/dL
		Children: 1.5 g/L
		(150mg/dL)

PERIODIC TABLE OF ELEMENTS

												44.956 4			91.	7	4	178	=	7.	(20	\simeq	104	
	4 5	IVB VB										7.88 50.942	Ti v	_	91.224 92.906	Zr Nb		178.49 180.95					4 105	
	9	N N								TRAN		51.996	Ç			Mo		183.85	⋧	74	(263)	Unh	901	
	7	VIII								TRANSITION ELEMENTS		54.938	Mn	25	98.907	Tc	43	186.21	Re	75	(262)	Uns	107	
	8		:							I ELEN		55.847	Fe	26	101.07	Ru	44	190.2	Os	92	(265)	Uno	801	
GROUPS	6	VIIIB								IENTS		58.933	ပိ	27	102.91	Rh	45	192.22	Į,	11	(266)	Une	601	
S	10		•									58.69	ž	28	106.42	Ьd	46	195.08	Pt	78	(267)	Uun	011	
	=	E				Afor	Sy	Ator				63.546	Cu	29	107.87	Аβ	47	196.97	Au	79				
	12	E				Atomic mass –	Symbol -	Atomic No.				65.39	Zn	30	112.41	рЭ	48	200.59	IIg	80				
	13	<u> </u>				118.01	g A	5.	26.982	ΑI	13	69.723	č	31	114.82	In	49	204.38	Ξ	81				
	14	۱۸۷				12.011	ن ص	9	28.086	Si	14	72.61	g	32	118.71	Sn	20	7	Pb	82			_	
	15	۸۸				14.007	z	7	30.974	4	15	74.922	As	33	121.75	Sb	51	208.98	Bi	83				
	91	۷ΙΛ		,	-	15.999	0	8	32.06	S	91	78.96	Se	34	127.60	Te	52	(209)	Po	84				
	17	VIIV				18.998	<u>-</u>	6	35.453		11	79.904	Βr	35	126.90	_	53	(210)	\ \ \	85				
	8.	VIIIV	- - - -] 	2.	20.180	Nc	10	39.948	۸r	81	83.80	Kr	36	131.29	Xe	54	(222)	Rn	98				

140.12	140.12 140.91 144.2	144.24	(145)	150.36	151.96		158.93	162.50	164.93	167.26	168.93	173.04	174.97
ပိ	Pr	PN	Pm	Sm	Eu		Tb	Dy	Ho	Ē.	Tm	Yb	Lu
58	. 59	09	19	62	63	64	65	99	29	89	69	70	71
232.04	232.04 231.04 238.0.	238.03	237.05	(244)	(243)		(247)	(251)	(252)	(257)	(258)	(259)	(260)
Ţ	Pa		aN	Pu	Αm		Bk	C	Es	Fm	PW.	S ₀	Ľ.
6	16	92	93	94	95		26	86	66	001	101	102	103
R	7	- 1	2.		;	?	;	;		·		_	

*Lanthanide Series

**Actinide Series

() indicates the mass number of the isotope with the longest half-life.