UNIVERSITY OF SWAZILAND FACULTY OF HEALTH SCIENCES DEGREE IN ENVIRONMENTAL HEALTH SCIENCES (FINAL EXAMINATION)

TITLE OF PAPER

: WATER DISTRIBUTION

COURSE CODE

: EHS 586

TIME

: 3HOURS

TOTAL MARKS

: 100

INSTRUCTIONS:

- ANSWER ANY FOUR QUESTIONS
- QUESTION 1(I) IS MULTIPLE CHOICE
- ALL QUESTIONS ARE WORTH 25 MARKS EACH
- NO FORM OF PAPER SHOULD BE BROUGHT IN OR OUT OF THE EXAMINATION ROOM
- BEGIN THE ANSWER TO EACH QUESTION IN A SEPARATE SHEET OF PAPER.

DO NO OPEN THIS EXAMINATION PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTIONS 1

I.

- a) Energy losses in transitions are due to the formation of eddies and pressure loss dissipation in the sudden form of heat energy.
- b) The hydraulic grade line shows the elevation of the pressure head along the pipe.
- c) For the flow of a real fluid through a pipe or other conduit, the velocity will not vary form wall to wall.
- d) Fluids have the ability to flow and suffer deformation due to shear stress.
- e) Pressure in a stationary liquid is the same all directions and is the same at all point in the same horizontal plane.
- f) According to Pascal's Principle, pressure applied to an enclosed fluid is not transmitted with same magnitude to every portion of the fluid and walls of containers.
- g) The maximum gauge pressure of water that can be measured by means of a piegometer tube 2m high is $19.62 \times 10^3 \text{ NM}^{-2}$.
- h) For steady conditions, total inflow to a junction is equal to total outflow from the junction.
- i) For steady flow at any junction the algebraic sum of all the mass flows must not necessarily be zero.
- j) When pressures are expressed as head, not essential that the mass density is given or the fluid named.

(20marks)

II.

Briefly describe the design of open channels

(5 marks)

QUESTION 2

a) If 54.5 dm³ of water are discharged from a vessel in 25 seconds, find the rate of discharge in m³/s and the velocity of the discharge if the discharge passed through an opening of 50 mm diameter.

(10 marks)

b) A 20 mm diameter pipe forks, one branch being 10 mm in diameter and the other 15 mm in diameter. If the velocity in the 10 mm pipe is 0.3 m/s and that in the 15 mm pipe is 0.6 m/s, calculate the flow rate in cm³/s and the velocity in m/s in the 20 mm pipe

(15 marks)

QUESTION 3

Using Bernoull's equation;

a) Calculate the head loss in a pipeline based on the following:

$$Z_1 = 4.5 \text{m m}, \quad p_1 = 280 \text{ kPa}, v_1 = 1.2 \text{ m/s}$$

= 9.3 m, p2 = 200 kPa, = 1.2 m/s

(6 marks)

b) If a 250 mm water main is carrying a flow of 60 l/s, what is the velocity of flow and head loss for (i) C 100 and C = 140?

Table 1 correction Factors to determine Head losses from Nomograph for Hazen Williams formular at values of C other than C 100.

(5 marks)

Table 1: Corrected $h_L = K \times h_L$ at C = 100

С	K	С	K
80	1.51	120	0.71
100	1.00	130	0.62
110	0.84	140	0.54

c) Calculate the head loss in a 600 mm – diameter , 1500m long smooth – walled concrete ($\Sigma = 0.001$) pipeline carrying a water flow of 0.30 m³/s.

(6 marks)

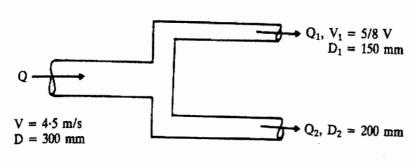
d) A pump discharge line consist of 60 m of 300 mm new cast iron pipe, three 90° medium-radius bends, two grater values and one swing check value. Compute the head loss through the line at a velocity of 1.0 m/s.

Table 2: Approximate Minor Head loss losses in fittings and values

Fitting or valve	Loss coefficient	Equivalent length (Diameters of pipe)	
Tee (run)	0.60	20	
Tee (branch)	1.80	60	
90° bend			
- Short radius	0.90	32	
 Medium radius 	0.75	27	
- Long radius	0.60	20	
45° bend	0.42	15	
Gate valve (open)	0.48	17	
Swing check valve	3.7	135	
(open)			
Butterfly valve (open) 1.2		40	

(8 marks)

QUESTION 4


a) In the following pipe system, balance the flows:

Loop	Pipe	Q (l/s)	h _{L (m)}	$h_L/Q (m/m^3/s)$
1	AB	120	11.48	95.64
	BE	10	3.39	338.77
	EF	-60	-40.42	673.75
	FA	-100	-8.36	83.66

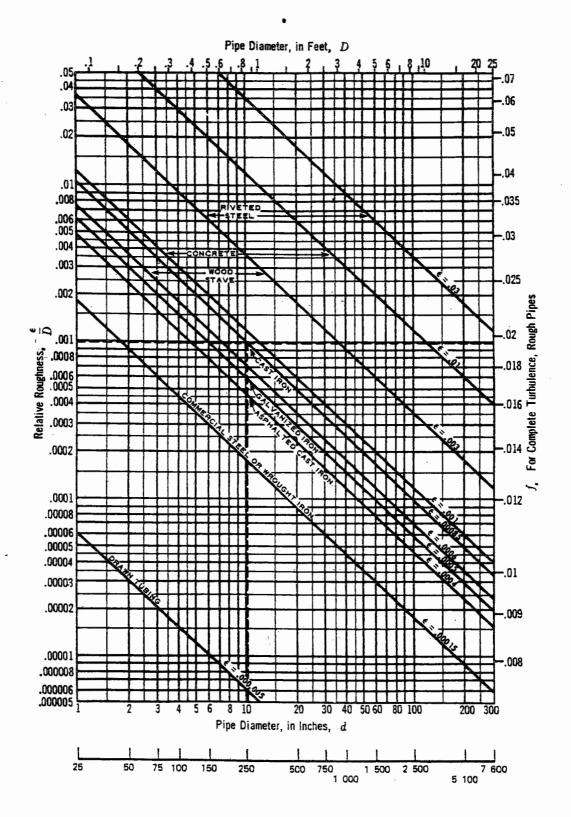
Loop	Pipe	Q (l/s)	h _{L (m)}	$h_L/Q (m/m^3/s)$
2	BC	50	28.40	567.98
	CD	10	3.39	338.77
	DE	-20	-4.94	246.78
	EB	-24.23	-18.34	756.77

(16marks)

(b) A pipeline of 300 mm diameter carrying water at an average velocity of 4.5 m/s branches into two pipes of 150 mm and 200 mm diameters. The average velocity in the 150 mm pipe is 5/8 of the velocity in the main pipeline. Determine the average velocity of flow in the 200 mm pipe and the total flow rate in the system in l/s.

Branching pipeline

(9 marks)


QUESTION 5

a) A pipe line 0.20m diameter and 50m long contains two 90^{0} elbows and one gate value. Allowing for sharp pipe entry and exit loss calculate the equivalent pipe length and the total head loss when the flow rate is $0.2m^{3}/s$ and the value is fully open. Take the function factor; f = 0.005.

(12 marks)

b) Estimate the energy (head) loss along a short length of pipe suddenly enlarging from a diameter of 350mm to 700mm and conveying 300 liters per second of water. If the pressure at the entrance of the flow is 10⁵ N/m², find the pressure at the exit of the pipe. What would be the energy loss if the flow were to be reversed with a contraction coefficient of 0.62?

(13 marks)

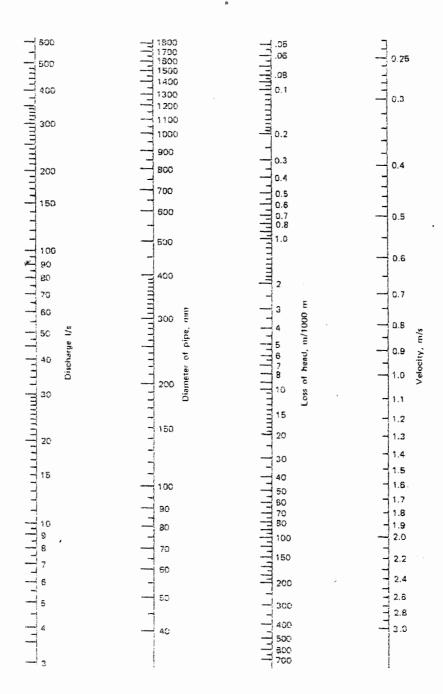


FIGURE 9

FORMULARS

1. Cd = 0.61 and T =
$$\int dt = ZA (H_1^{1/2} - H_2^{1/2})$$

Cda $\sqrt{2g}$

2. Q =
$$2/3$$
 Cd $\sqrt{2}$ g b($H_1^{3/2} - H_2^{3/2}$)

3.
$$Y_i = Y_S/2 (\sqrt{1+8\beta f_S^2} - 1)$$

4.
$$F_{S=}V_S/\sqrt{g}Y_S$$

5.
$$(Y + V/2g) - (Y + V/2g)$$

6.
$$\rho g y^2 / 2 + \rho q (V_1 - V_2) - \rho g Y_2^2 / F_X = 0$$

7.
$$Y_G = Y_s \sqrt{1+2F_s^2} (1-Y_S/Y_2)$$

8.
$$Q = AV$$

9.
$$Q = A/n R^{2/3} S_0^{1/2}$$

10.
$$Y_i = Y_S/2 (\sqrt{1+8\beta f_S^2} - 1)$$

11.
$$F_{S=} V_S / \sqrt{g} Y_S$$

12.
$$p_{1}/pg + v_{1}^{2}/2g = p_{2}/pg + v_{2}^{2}/2g + 0.03 (p_{1}/pg - p_{2}/pg)$$

13. Q = 1.84BH^{3/2} [(1+
$$\alpha$$
 v²/2q H)^{3/2} - (α v²/2q H)^{3/2}]

14.
$$k = [(1 + \alpha v^2/2g H)^{3/2} - (\alpha v^2/2g H)^{3/2}]$$

15. h=
$$(v^2/2g)(1+A_1/A_2)^2 = v^2/2g(A_1/A_2 - 1)^2$$

16. W =
$$\sum p^{2\text{rms}(1)}S_i$$
, where ρC = 420 RAYLS.

$$17. S.I.L = 10 \log_{10}(I) + 120$$

18.
$$L_p = 10 \log (p_1/p_0)^2$$
 or $(p_1/p_0)^2 = 10^{Lp/10}$

19.
$$L_p(total) = 10 log (p_{total}/p_0)^2$$

$$21.L_W = 10 \log W/W_0$$

22.
$$h = 2\sigma Cos \theta$$

24.
$$W = \rho g Q h_p$$
,

25. Turbine output =
$$\eta_t \rho g Q h_p$$
,

26.
$$k=[(1+\alpha v^2/2g H)^{3/2}-(\alpha v^2/2g H)^{3/2}]$$

27. h=
$$(v^2/2g)(1+A_1/A_2)^2 = v^2/2g(A_1/A_2-1)^2$$

28.
$$Q = a_1 v_1 = a_1 v_2$$

28.
$$Q = a_1 v_1 = a_1 v_2$$

29. $h_L = (1/C_c-1)^2 V_1^2/2g$

30.
$$A = (b + Ny)y$$

31.
$$P = b + 2 y \sqrt{(1+N^2)}$$

32.
$$\Delta Q = \frac{\sum h}{2 \sum h/Q}$$