See workers Like

UNIVERSITY OF SWAZILAND FIRST SEMESTER EXAMINATION 2008/2009

TITLE OF PAPER : Instrumental Methods For Environmental

Analysis - 1

COURSE CODE : EHS 573

TIME ALLOWED : Two (2) HOURS

INSTRUCTIONS : Answer any <u>Four</u> (4) Questions. Each

Question Carries 25 Marks

A periodic table and other useful data have been provided with this paper.

Question 1 (25 marks)

- (a) Discuss the significance/advantages of the modern instrumental methods of analysis in modern day environmental studies. [5]
- (b) During the analysis of a given environmental sample, 'Selection of the appropriate method' and 'Sampling' are of utmost importance.
 - (i) Briefly discuss the major figures of merit (or performance characteristics), that would enable you to select an appropriate method for such analysis. [11]
 - (ii) Sate other useful factors that can be employed in the method selection process. [2]
 - (iii) Explain the terms 'Sampling' and 'Sample pretreatment'. [2]
 - (iv) Why is sample pretreatment essential here? Give four common examples. [5]

Question 2 (25 marks)

- (a) With the help of a labeled schematic diagram, identify the basic components of an instrument for environmental analysis. Give one function of each of the components indentified.
- (b) During the analysis of a species, X, in an aqueous solution, the following calibration data were obtained

Concentration (mg/L)	No. of Replicate Readings, N	Average Analytical Signal, S	Standard Deviation,
			S
0.00	25	0.0371	0.0079
2.00	5	0.173	0.0094
6.00	5	0.442	0.0084
10.00	5	0.702	0.0084
14.00	5	0.956	0.0085
18.00	5	1.248	0.0110

For this method, calculate:

- (i) The analytical sensitivity at each concentration
- (ii) The minimum analytical signal, S_m.
- (iii) The Calibration sensitivity, m.
- (iv) The detection limit, c_m.
- (v) The % r_s (percentage relative standard deviation), for each of the replicate sets of reading.

Qı	uestion 3 (25 marks)	
(a)	Sate the mathematical expression of Beer's law and give the S.I units of all the para	
	involved in it. What assumptions are made in deriving this law?	[7]
(b)	Explain or discuss the following:	
	(i) Positive and negative deviation from Beer's law.	[4]
	(ii) The causes and correction/minimization of real and instrumental deviations from	Beer's
	law.	[6]
(c)	and the second of the second o	percent
	transmittance of 31.4 at a given wavelength. Calculate the following:	
	(i) Absorbance of the solution.	
	(ii) Molar absorptivity of the complex.	
	(iii) Absorbance of the same solution in a 5.00-cm cell.	
	(iv) The cell path that will give a percent transmittance of 20.0	507
		[8]
Ç	Question 4 (25 marks)	
(a)	
	(i) What is a spectrophotometer? [2]	
	(ii) Identify four of the basic components of a spectrophotometer and the correspon	ding
	function/s of each of them.	[6]
(b	With regards to the monochromator system for a spectrophotometer:	
	(i) List the components and give the respective functions/s of each of them.	[6]

(ii) What are the advantages and weaknesses of 'diffraction gratings' when compared with a

(iii) Explain the term 'dispersion of a prism'. Hence briefly discuss the working principles of

(iv) Sate the factors that enhance the resolution of a 'prism' and the 'diffraction gratings'

[3]

[4]

'glass prism'?

a prism as a monochromator.

Question 5 (25 marks)

The hollow cathode lamp is a vital primary source of radiation in atomic absorption spectrometry. Discuss:

(a) Its features as a sharp line radiation source. [3]
(b) Its structure (configuration) plus a schematic diagram of it. [7]
(c) Its working principles. [10]
(d) The composition and short comings of multielement hollow cathode lamps. [3]

[2]

Question 6 (25 marks)

(e)

For the elecrothermal atomic absorption spectrophotometry (EAAS), Discuss/Describe:

The essence of the cylindrical structure of the cathode tube.

- (a) Its main structural (configurational) features, using a schematic diagram as support. [7]
- (b) The stages involved in the atomization process. [9]
- (c) Absorbance measurement and use of matrix modifiers. [3]
- (d) Its advantages and weakness when compared with the flame atomic absorption spectrometry. [6]

	Quantity	Symbol	Value .	General data and fundamental
	Speed of light	C	$2.99792458 \times 10^8 \mathrm{m s^{-1}}$	
	Elementary———— charge			constants
	Faraday constant	$F = eN_A$	9.6485 × 10 ⁴ C mol ⁻¹	
	Boltzmann constant	k	1.380 66 × 10 ⁻²³ J K ⁻¹	
	Gas constant	$R = kN_A$	8.31451 J K ⁻¹ mol ⁻¹	
	•		8.205 78 × 10 ⁻²	·
			dm³ atm K-1 mo	1-1
			62.364 L Torr K ⁻¹ mol ⁻¹	
	Planck constant	h	$6.62608 \times 10^{-34} \text{ J s}$	
		$\hat{n} = h/2\pi$	$1.05457\times10^{-34}\mathrm{J}\mathrm{s}$	
	Avogadro constant	N'A	$6.02214\times10^{23}\mathrm{mol^{-1}}$	
	Atomic mass unit	u ·	$1.66054 \times 10^{-27} \mathrm{kg}$	
	Mass of electron	m.	$9.10939 \times 10^{-31} \text{ kg}$	
-	proton		$1.672-62 \times 10^{-27} \text{ kg}$	
	neutron	m · · - · ·	1.674 93 × 10 ⁻²⁷ kg	
~	Vacuum : permeability	μ _ο	$4\pi \times 10^{-7} \mathrm{J}\mathrm{s}^2\mathrm{C}^{-2}\mathrm{m}^{-1}$	
			$4\pi \times 10^{-7} \mathrm{T}^2 \mathrm{J}^{-1} \mathrm{m}^3$	
	Vacuum permittivity	$\varepsilon_0 = 1/c^2 \mu_0$	$8.854 \ 19 \times 10^{-12} \ J^{-1} \ C^2 \ m^{-1}$	••• •• •• •• •• •• •• •• •• •• •• •• ••
		$4\pi\varepsilon_0$	1.112 65 × 10 ⁻¹⁰ J ⁻¹ C ² m	
	Bohr magneto	$\mu_s = eft/2m_s$	$9.27402 \times 10^{-24} \text{ J T}^{-1}$	
	Nuclear magneton	$\mu_N = e \hbar/2m_p$	$5.05079 \times 10^{-27} \text{J} \text{T}^{-1}$	
	Electron g value	g.	2.002 32.	
	. Bonr radius	$a_2 = 4\pi \epsilon_0 h^2/m$	5.291 77 × 10 ⁻¹¹ m	
	Rydberg constant	R_ = m,e4/8h		•
	Fine structure constant	$c = \mu_0 e^2 c/2h$	7.29735×10^{-3}	
	Gravitational constant	G	$6.67259 \times 10^{-11} \text{ N m}^2 \text{ kg}$	J ⁻²
	Standard t acceleratio	. g	_ 9.806.65_n_s ⁻²	
·	of free fall			t Exact (defined) values
	f p	n μ t	m cdk·M	G Prefixes
	femto pio	o nano micro m	nilli centi deci kilo mega	a giga
	10-15 10-		0 ⁻³ 10 ⁻² 10 ⁻¹ 10 ³ 10 ⁶	• •

PERIODIC TABLE OF ELEMENTS

		SGOI									1			\exists		_	7			\dashv		_		
			X00.	=	-	6.941	ت	5	22.990	Na Na	=	~	<u>~</u>	61	85.468	 €	-	132.91						
ě	2	<u> </u>				9.012	Be	4	24.305	Mg	12	40.078	౮	20		Sr.				-+				
	2	≘ —			r							44.956	Sc	21	88.906	>	+	138.91					68	
	4	<u> </u>										47.88	Ξ	22	91.224	Zr	40	178.49	JII	72	(261)	<u>R</u>	104	
	5	N.										50.942	>	23	92.906	SN	41	180.95	La L	73	(292)	Нл	50,	
	9	NE VE								TRA		- 5	Ç	24		Mo	42	183.85	⋧	74	(263)	Unh	901	
	_	<u>></u>								TRANSITION ELEMENTS		54.93	Mn	25	98.907	Tc				_	(292)	Uns	107	
	7	SIII								ON EL		8 55.847		26	_	Ru		<u>. </u>	O _s	9/	(265)	Uno	108	
-	8									EMEN		 		-	_	Rh		192.22		77		Une	109	
GROUPS	6	VIIIB								LLS		58.933	ပိ				-	<u> </u>			_			
	10	:										58.69	ż	28	-	Ьd	46	195.08	Pt		(2)	Uun	011	
		=				Afon	Syı	Aton				63.546	Cn	29	107.87	Λg	47	196.97	γn	79				
	12	=				Atomic mass —	Symbol -	Atomic No.				65.39	Zn	30	112.41	р	48	200.59	IIg	80				
	13	Y.				10.811	m 1	2	26.982	A	13	69.723	ű	31	114.82	In	49	204.38	I	8				
	14	۱۷۸				12.011	ပ —	9	28.086	Si	4	72.61	g	32	118.71	Sn	20	207.2	Pb	82				
	15	۷۸				14.007	z	7	30.974	4	15	74.922	As	33	121.75	$^{\mathrm{Sp}}$	51	208.98	B.	83				
	91	۷I۷			-	15.999	0	∞	32.06	s	91	78.96	Sc	34	127.60	Te	52	(209)	Po	84				
	17	VIIV				18.998	<u>-</u>	6	35.453	C	11	79.904	Br	35	126.90	_	53	(210)	71	85				
	18	VIIIV	4.003	He	2.	20.180	Nc	01	39.948	۸r	81	83.80	Kr	36	131.29	Xc	54	(222)	Rn	98				

140 13	14091	140 12 140 91 144 24	L	75 051	151 06	157.75	150 02	05 691	164.02	20.631	160.03	133.04	17.07
		7:1:	_	00.00	02:15	(7.10)	CK.0C1	06.201	104.75	07./01	100.73	1/3.04	1/4.9/
ಲ <u> </u>	Pr	PN	Рш	Sm	Eu	PS	Tb	Dy	Ho	Ē	Tm	Xp	Lu
28	59	09	19	62	63	64	65	99	29	89	69	70	7.1
232.04 231.04 238.03 237.05	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
Th	Pa	ם	Νp	Pu	Αm	Cm	Bk	C	Es	Fm	PW.	Š	בֹּ
06	16	92 .	93	94	95	96	6	86	66	100	101	102	103
				,			, ,	71 11	7.7				

Lanthanide Series

**Actinide Series

() indicates the mass number of the isotope with the longest half-life.