

UNIVERSITY OF SWAZILAND Faculty of Health Sciences

DIPLOMA IN ENVIRONMENTAL HEALTH

FINAL EXAMINATION PAPER 2007/2008

TITLE OF PAPER

ALGEBRA FOR HEALTH SCIENCES

COURSE CODE

HSM 111

DURATION

2 HOURS

MARKS

80

INSTRUCTIONS

READ THE QUESTIONS & INSTRUCTIONS

CAREFULLY

ANSWER ANY FOUR (4) QUESTIONS

: EACH QUESTION CARRIES 20 MARKS

: WRITE NEATLY & CLEARLY

: SHOW ALL YOUR WORKING

: NO PAPER SHOULD BE BROUGHT INTO NOR OUT

OF THE EXAMINATION ROOM

: BEGIN EACH QUESTION ON A SEPARATE SHEET

OF PAPER

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION IS GRANTED BY THE INVIGILATOR

Question 1

(a) Use the method of long division to work out

$$\frac{x^5 + 2x^4 - 2x^2 + 2x - 8}{x^2 + 1}.$$
 [10 marks]

(b) The number of people infected with flu in a certain university campus is given by

$$I(t) = 50,000 (1 - e^{-0.008t}),$$

where t is the number of days after the initial outbreak.

- (i) How many people are infected after 10 days?
 - 3 marks
- (ii) After how many days will 50% of the campus be infected? 7 marks

Question 2

(a) Solve for x

i.
$$3^{4x-7} = \frac{1}{9}$$
 [6 marks]

ii.
$$\log_2(2x+2) = 2$$
 [4 marks]

(b) Prove that

$$\tan \alpha + \frac{\cos \alpha}{1 + \sin \alpha} = \sec \alpha.$$
 [10 marks]

Question 3

- (a) Find all roots of $x^3 6x^2 + 11x 6 = 0$. [10 marks]
- (b) Find the middle term of the binomial expansion of $\left(x^2-\frac{1}{x}\right)^{16}$. [6 marks]

(c) If $\sin \alpha = \frac{3}{5}$ and the angle α lies in the second quadrant, find the exact value of $\cos \alpha$. [4 marks]

Question 4

(a) Given the complex numbers $z_1 = 1-i$, $z_2 = 3-4i$, $z_3 = -2i$, compute each of the following and express in the form a + ib.

i.
$$4z_1-\bar{z}_2$$
 ii. z_1z_2 iii. $|z_2|$ iv. $(z_3)^5$ v. $\frac{z_3}{z_1}$ [10 marks]

(b) Find the coordinates of the centre and the radius of the circle

$$x^2 + y^2 - 10x + 8y + 5 = 0.$$
 [10 marks]

Question 5

(a) Use the quadratic formula to solve

$$x^2 + 8x + 15 = 0.$$
 [8 marks]

(b) Solve

$$\log_2(x+2) + \log_2(x-5) = 3.$$
 [8 marks]

(c) Find the value of the infinite sum

$$4-2+1-\frac{1}{2}+\cdots$$
. [4 marks]

Question 6

(a) Given the matrices

$$A = \begin{pmatrix} -1 & 2 & 3 \end{pmatrix}, B = \begin{pmatrix} 0 & -2 \\ 1 & -1 \end{pmatrix},$$

$$C = \begin{pmatrix} 6 & -2 \\ -1 & 4 \end{pmatrix}, D = \begin{pmatrix} 1 & -2 & 1 \\ 4 & 0 & 2 \end{pmatrix}.$$

Perform the following operations where possible. If an operation is impossible, clearly state so.

i.
$$A+2B$$
 ii. $4B-2C^T$, iii. CD , iv. DB , v. AD^T , vi. DA . [12 marks]

(b) Find the equation of a straight line that is perpendicular to 4y+8x=3 and passes through the point (5,-2). [8 marks]

Question 7

Use Cramer's rule to solve for x, y and z, given

$$x + y + 2z = 4$$

 $2x + 3y + 3z = 5$
 $3x + 3y + 7z = 14$

[20 marks]