UNIVERSITY OF SWAZILAND DIPLOMA IN ENVIRONMENTAL HEALTH SCIENCE SUPPLEMENTARY EXAMINATION PAPER 2008

TITLE OF PAPER

CHEMISTRY FOR HEALTH

SCIENCES

COURSE CODE

HSC 106

TIME

3 HOURS

TOTAL MARKS

: 100 MARKS

INSTRUCTIONS

ONLY

: ANSWER ANY FOUR QUESTIONS

: EACH QUESTION IS 20 MARKS

: A PERIODIC TABLE AND DATA SHEETS ARE PROVIDED WITH THIS EXAMINATION PAPER

: NO FORM OF ANY PAPER SHOULD BE BROUGHT INTO NOR TAKEN OUT OF THE EXAMINATION ROOM

: BEGIN THE ANSWER TO EACH QUESTION ON A SEPARATE SHEET OF PAPER

: ALL CALCULATIONS/WORKOUT DETAILS SHOULD BE SUBMITTED WITH YOUR ANSWER SHEET(S)

DO NOT OPEN THIS EXAMINATION PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1 [25 MARKS]

- a) Convert the following figures to the units indicated: [4]
 - 72 pulse/min.....pulses/sec i)
 - 25 mL.....L ii)
 - (iii
 - $50 \ \mu g$mg $6.4 \times 10^{24} \ atoms$moles iv)

$$1 \text{ oz} = 28.4 \text{ g}$$

 $6.023 \times 10^{23} = 1 \text{mole}$

- b) i) Write short notes explaining the differences between Systematic and random
 - Explain the difference between accuracy and precision. [6] ii)
- c) Give the correct reading of the following measurement in the form $x\pm S_x$. [2] i)

- Calculate the degree of precision as a percentage coefficient of variation (or ii) percentage relative standard deviation, %RSD) in your reading. [2]
- iii) Calculate the percentage relative error (% RE) in the reading by using the difference between the reading without any correction and the reading after correction. [2]
- iv) Based on the % RSD and the % RE would you consider readings from this instrument reliable, explain. [2]
- v) What are the two sources of error in this device? [1]

Useful Formulae:

standard deviation
$$S_x = \sqrt{\frac{\sum_{i=1}^{N} (\bar{x} - x_i)^2}{N-1}}$$
; mean $\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N}$

QUESTION 2 [25 MARKS]

- a). Explain the difference between the following pairs of terms. Give examples for each pairs.
- Ionic bonding and Covalent bond i).
- Hunds rule and Agfbau builing up principle [6] ii)
- Draw Lewis structures or diagrams to show and name the type of bonding for each of b).

the following:

- (i) calcium chloride [2]
- (ii) NH_4^+ [3]
- c) i) Using Hunds rule, Agfbau builing up principle and the periodic table write the electronic configurations of <u>any Two</u> of the following elements. [4]
 - ii) Also indicate the role in health and the most likely dietary sources of the **Two** you have chosen in c(i): [4]

Iodine

Iron

Calcium

Iron

QUESTION 3 [25 MARKS]

- a) Define the term "empirical formula" and "molecular formula". [6]
- b) Give three ways by which the empirical formula may be obtained. [3]
- c) 6.853 mg of a sex hormone containing C, H and O was burned to determine its molecular formula. On burning 20.08 mg CO_2 and 5.023 mg of H_2O were obtained. The formula weight of the substance was found to be 270 g/mol.
- i) Calculate the Empirical formula for the hormone [10]
- ii) Calculate the molecular formula for the hormone [6]

[note that the unit 1 mg = $0.001 \text{ g} = 1 \text{x} 10^{-3} \text{g}$]

QUESTION 4 [25 Marks]

- a) Using equations define the following terms:
 - i) Molarity
- [4]
- ii) Normality [2]
- iii) Equivalents [3]
- b) A nurse is asked to prepare 5 % (w/v) solution of an antibiotic using water.
 - i) Calculate the amount of antibiotic required in a 250 ml container. [3]
 - ii) Calculate the amount of the 5 % (w/v) antibiotic prepared required to make 1 % (w/v) in a 25 ml container. [3]
- d) An antacid tablet was given to a patient to relieve stomach discomfort. Given that the antacid was magnesium hydroxide, Mg(OH)₂ which reacts with sulphurice acid. How many grams acid in the stomach will 3.0 g antacid tablet neutralize ?[10]

QUESTION 5 [25 MARKS]

- a) i) Define a buffer solution. [2]
 - ii) Name three kinds of buffers found in the body.[3]
 - iii) Using an example of one body buffer explain how a buffer behaves on ingestion of acidic drinks. [5]
- b) Briefly discuss **any one** of the following: [10]
 - i) Respiratory Acidosis
 - ii) Metabolic Alkalosis

In your discussion include the cause, the symptoms and the treatment.

A 25 year old woman is admitted to hospital. On admission her laboratory results were as follows:

Blood pressure	90/40 mm Hg	Sodium	130 mmol/L
Deep respirations	35/min	Potassium	6.5mmol/L
Pulse	120/min	pН	6.73
glucose	16 mmol/l	PCO ₂	10 mm Hg
protein	150 μg/dl	Blood ketones	positive

- Using the data given explain the condition of the patient, giving specific reasons for the condition. [3] What treatment would you prescribe. [2] i)
- ii)

NORMAL LABORATORY VALUES FOR BLOOD TESTS

	USUAL REFERENCE RANGE		
Specific Gravity		1.056	
Hemoglobin Count Hb		Men: 14 - 18g /dL	
		Women: 12 -16 g/dL	
HCO ₃ Bicarbonate	24 - 28 mmol/L	24 - 28 mEq/L	
Glucose	(3.6-6.1 mmol/L)	65 - 110 mg/dL	
BUN (Blood Urea Nitrogen)	2.9 - 7.1 mmol/L	8 - 20 mg/dL	
Ca ⁺²	(2.1-2.6 mmol/L)	8.5 - 10.3 mg/dL	
Cl ⁻	(96-106 mmol/L)	96 - 106 mEq/L	
Cholesterol		150 - 220 mg/dL	
CO ₂	24-29 mmol/L	24-29 mEq/L	
PCO ₂		35-45 mmHg	
PO ₂		80 - 100 mm Hg	
pН		7.35 - 7.45	
Fatty acids	0.3-0.8 mmol/L	0.3-2 mg/dL	
Protein		6-8 μg/dL	
Phosphate	1 - 1.5 mmol/L	3-4.5 mg/dL	
ketone bodies		0.3-2 mg/dL	
K ⁺	3.5-5 mmol/L	3.5 - 5 mEq/L	
Na ⁺	136-145 mmol/L	136 - 145 mEq/L	
Uric Acid	Men: 0.18 - 0.54	Men: 3 - 9 mg/dL	
	Women: 0.15 - 0.46 mmol/L	Women: 2.5 - 7.5 mg/dL	
		Children: 1.5 g/L	
		(150mg/dL)	