UNIVERSITY OF SWAZILAND DIPLOMA IN ENVIRONMENTAL HEALTH SCIENCE FINAL EXAMINATION PAPER 2007/8

TITLE OF PAPER : INTEGRATED BASIC SCIENCES

COURSE CODE : HSC 106

TIME : 2 HOURS

TOTAL MARKS : 100 MARKS

INSTRUCTIONS : THIS QUESTION PAPER HAS FIVE

QUESTIONS

: ANSWER FOUR QUESTIONS

ONLY

: EACH QUESTION IS 25 MARKS

: AT LEAST TWO QUESTIONS MUST BE ANSWERED FROM

EACH SECTION.

: A PERIODIC TABLE AND DATA SHEETS ARE PROVIDED WITH

THIS EXAMINATION PAPER

: NO FORM OF ANY PAPER SHOULD BE BROUGHT INTO NOR

TAKEN OUT OF THE

EXAMINATION ROOM

: BEGIN THE ANSWER TO EACH

QUESTION ON A SEPARATE

SHEET OF PAPER

: ALL CALCULATIONS/WORKOUT DETAILS SHOULD BE

SUBMITTED WITH YOUR

ANSWER SHEET(S)

DO NOT OPEN THIS EXAMINATION PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR

QUESTION 1

20 MARKS]

a) Convert the following figures to the units indicated: [6]

- $i) \hspace{1cm} 2.02 \hspace{1mm} kg/L \hspace{1cm} g/ml$
- v) 72 pulse/min.....pulses/sec
- ii) 25 ml.....L
- vi) 20 oz/gal.....g/L
- iii) 50 000 mg......μg

Recall:
$$1 \text{ minute} = 60 \text{ secs}$$

 $1 \text{ in} = 2.54 \text{ cm}$ $1 \text{ gal} = 3.8 \text{ L}$

$$1 \text{ oz} = 28.4 \text{ g}$$

 $6.023x10^{23} = 1 \text{mole}$

b) Carry out the following calculations and express each answer with the <u>correct</u> number of decimal, significant figures and units. [2]

- i) $4.6742 \text{ g} \div 0.00 371 \text{ L} =$
- ii) $\frac{3.41 g 0.02310 g}{5.2331 ml} * 0.2051 ml =$
- c) Write short notes explaining the differences between the following **pairs**:
 - i) Accuracy and precision
- [2]
- ii) Systematic and random errors
- [2]

d) A patient was to be given 3.231 mg of de-worming tablets. Two doctors Bongi and Mqondile weighed tablets five times to get the following readings:

Bongi Mqondile

	•
3.151	3.217
3.314	3.193
3.291	3.208
3.014	3.226
3.352	3.301

Calculate (for both Bongi and Mqondile):

- i) the mean [1]
- ii) Standard deviation [1]
- iii) % Coefficient of variation [1]
- iii) % Relative error [1]
- e) Which measurements from 2(c) above are the most? [1]
 - i) accurate
 - ii) precise
- f) What type(s) of error are in the measurements by ? [1]
 - i) Bongi
 - ii) Mqondile

g) What appropriate action would you take to prevent the errors you have given in 2(d) above ? [2]

Useful Formulae:

standard deviation
$$S_x = \sqrt{\frac{\sum_{i=1}^{N} (\bar{x} - x_i)^2}{N-1}}$$
; mean $\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N}$

QUESTION 2 [20 MARKS]

- a). Explain the difference between <u>Any Two</u> of the following pairs of terms. Give examples for each pair.
- i). Ionic bonding and Covalent bond [5]
- ii). Co-ordinate bond and Metallic bonding [5]
- ii). Octet Rule and the periodic Law [5]
- iv). Compounds and elements [5]
- v) Hunds rule and Agfbau builing up principle [5]
- b). Draw Lewis structures or diagrams to show and name the type of bonding for each of the following: [5]
 - (i) calcium chloride
 - (ii) NH_{4}^{+}
 - (iii) H₂O
 - (iv)

$$NH_3 + BF_3 \rightarrow NH_3BF_3$$

- (v) CH_2CH_2
- c). i) Using Hunds rule, Agfbau builing up principle and the periodic table write the electronic configurations of **any Two** of the following elements. [2]
 - ii) Also indicate their environmental hazards and most likely source of the **Two** you have chosen in c(i): [3]

Arsenic Lead Cadmium Mercury

QUESTION 3 [20 MARKS]

- a) i) Define a buffer solution [2]
 - ii) Name three kinds of buffers found in the body. [3]
- b) Briefly discuss any one of the following: [6]
 - i) Respiratory Alkolosis
 - ii) Metabolic Alkolosis

In your discussion include the cause, the symptoms and the treatment.

c) A 19 year old man is admitted to hospital.. On admission his laboratory results were as follows:

Blood pressure	90/20 mm Hg	Sodium	132mmol/L
Deep respirations	35/min	Potassium	6.5mmol/L
Pulse	120/min	pН	6.75
glucose	20 mmol/l	PCO ₂	11 mm Hg
protein	100 μg/dl	Blood ketones	positive

- i) Using the data given diagnose the condition of the patient, giving specific reasons for your diagnoses. [6]
- ii) What treatment would you prescribe. [3]

QUESTION 4 [20 MARKS]

- a) Define the difference between empirical and molecular formular [5]
- b) 6.853 mg of a sex hormone containing C, H and O was burned to determine its molecular formula. On burning 20.08 mg CO_2 and 5.023 mg of H_2O were obtained. The formula weight of the substance was found to be 270 g/mol.
 - i) Calculate the Empirical formula for the hormone [10]
 - ii) Calculate the molecular formula for the hormone [5] [note that the unit 1 mg = 0.001 g = 1×10^{-3} g]

QUESTION 5 [25 Marks]

- a) Using equations define the following terms:
 - i) Molarity
- [4]
- ii) Normality
- [2]
- b) Balance each of the following chemical equations.
 - i) $C_3H_8+O_2\rightarrow CO_2+H_2O$

[3]

ii) $SO_2 + HNO_3 + H_2O \rightarrow H_2SO_4 + NO$

[3]

iii) $Fe_2(SO4)_3+NH_3+H_2O\rightarrow Fe(OH)_3+(NH_4)_2SO_4$

[3]

d) An antacid tablet was given to a patient to relieve stomach discomfort. Given that the antacid was magnesium hydroxide, Mg(OH)₂ which reacts with hydrochloric acid.

How many grams acid in the stomach will 1.50 g antacid tablet neutralize ?[10]

Useful Relations				General Data		
$(RT)_{008.15V} = 2.4789 \text{ kJ/mol}$	kJ/mol	HALIMANI MPARAMATANI PARI PARI PARI PARI PARI PARI PARI PAR		speed of light	C	2.997 925x10 ⁸ ms ⁻¹
(RT/F) _{298.15K} =0.025 693 V	5 693 V		en i de pri in til general mana en en men i de desse men de en	charge of proton	е	1.602 19x10 ⁻¹⁹ C
T/K: 100.15 298.15		500.15 1000.15	***************************************	Faraday constant	F=Le	9.648 46x10 ⁴ C mol ⁻¹
.:†	.	.		Boltzmann constant	*	$1.380~66 \text{x} 10^{-23} \text{ J K}^{-1}$
	$\sqrt{m^{-2}}$	######################################		Gas constant	R=Lk	8.314 41 J K ⁻¹ mol ⁻¹
$hc/k=1.43878\times10^{-2}$	² m K					8.205 75x10 ⁻² dm ³ atm K
1atm	1 cal	1 eV	1cm ⁻¹		**************************************	
=1.01325x10 ⁵ Nm ⁻²	² =4.184 J	=1.602 189x10 ⁻¹⁹ J	$=0.124 \times 10^{-3} \text{ eV}$	Planck constant	F	6.626 18x10 ⁻³⁴ Js
=760torr	***************************************	=96.485 kJ/mol	$=1.9864 \times 10^{-23} \text{J}$		т <u></u> h	2
=1 bar		$= 8065.5 \text{ cm}^{-1}$			2π	$1.054 59 \times 10^{-34} \text{ Js}$
				Avogadro constant	L or N _{av}	6.022 14x10 ²³ mol ⁻¹ O
SI-units:				Atomis mass unit	=	$1.66054 \times 10^{-27} \mathrm{kg}$
$1 L = 1000 \text{ ml} = 1000 \text{cm}^3 = 1 \text{ dm}^3$	$100cm^3 = I$	d m 3	***************************************	Electron mass	m _e	9.109 39x10 ⁻⁵¹ kg
1 dm = 0.1 m				Proton mass	m _p	1.672 62x10 ⁻²⁷ kg
1 cal (thermochemical) = 4.184 J	(cal) = 4.184	† J		Neutron mass	m _n	1.674 93x10 ⁻²⁷ kg
dipole moment: 1 Debye = $3.335 64 \times 10^{-30}$ C m	Debye $= 3.3$	_		Vacuum permittivity	$\varepsilon_{\rm o} = \mu_{\rm o}^{-1} {\rm c}^{-2}$	8.854 188x10 ⁻¹² J ⁻¹ C ² m ⁻¹
force: $IN=IJ m^{-I} = Ikgms^{-2} = 10^5 \text{dyne}$	$lkgms^{-2}=1($		pressure: $IPa=INm^{-2}=1Jm^{-3}$	Vacuum permeability	μ_{o}	$4\pi \times 10^{-7} \text{ Js}^2 \text{C}^{-2} \text{ m}^{-1}$
$IJ = I Nm$ $nower 1W = 1J s^{-1}$		notential: 1V =1 J C ⁻¹	$V = 1 J C^{-1}$	Bohr magneton	$\mu_{\rm B} = e\hbar/2m_{\rm e}$	$9.274~02 \times 10^{-24} \text{ JT}^{-1}$
magnetic flux: 1T=1Vsm ⁻² =1JCsm ⁻²	1Vsm ⁻² =1J(1A=1Cs ⁻¹	Nuclear magneton	$\mu_{\rm N} = e\hbar/2m_{\rm p}$	5.05079x10 ⁻²⁷ JT ⁻¹
Prefixes:	- Market and the State of Stat			Gravitational constant	G	6.67259x10 ⁻¹¹ Nm ² kg ⁻²
p n m	m	c d k	M G	Gravitational	9	9.80665 ms ⁻²
pico nano micro	milli	deci	mega giga	acceleration		
10 ⁻¹² 10 ⁻⁹ 10 ⁻⁶	10 ⁻³	10^{-2} 10^{-1} 10^{3}	10^6 10^9	Bohr radius	a	5.291 77x10 ⁻¹¹ m

THE PERIODIC TABLE OF ELEMENTS

					•	7			6			s				4			ω			2			_	Period		Group	
Acti		Lanth			223	Fr	87	132.9	Cs	55	85.47	Rb	37		39.10	~ ~	19	22.99	Za	11	6.94	Li	3	1.008	H	1	IA	_	
Actinides		Lanthanides			226.0	Ra	88	137.3	Ва	56	87.62	Sr	38		40.08	Ca	20	24.31	Mg	12	9.01	Ве	4				IIA	2	
					257	Lr	103	174.9	Lu	71	88.91	Y	39	44.96	Sc		21										IIIB	رى 	
89 Ac 227.0	138.9	La	57			Unq	104	178.5	Hf	72	91.22	Zr	40		47.90	Ti	22							,			IVB	4	
90 Th 232.0	140.1	Ce	85			Unp	105	180.9	Ta	73	91.22	Nb	41		50.94	~	23										VB	5	
91 Pa 231.0	140.9	Pr	59			Unh	106	183.8	¥	74	95.94	Mo	42		52.01	Cr	24		•	, <u>≤</u>							VIB	6	
92 U 238.0	144.2	Nd	60			∪ns	107	186.2	Re	75	98.9	Tc	43		54.9	Mn	25			METALS							VIIB	7	1
Np 237.1	146.9	Pm	61			∪no	108	190.2	Os	76	101.1	Ru	44		55.85	Fe	26									Z		~	>
Pu . 239.1	150.9	Sm	62			Une	109	192.2	Ir	77	102.9	Rh	45		58.71	Co	27					METALLOIDS				NON-METALS	VIIIB	9	>
Am 241.1	151.5	Eu	63					195.1	Pt	78	106.4	Pd	46		58.71	Z	28					CIDS	<u></u>			[ALS		IO	10
Cm 247.1	13/.3	Gd	64					196.9	Au	. 79	107.9	Ag	47		63.54	Cu	29	3					^		4		IB	3 =	1
Bk 249.1	07	Tb	65					200.6	BH	8	112.4	Cd	48		65.37	Zn	اع ا				_			_			IIB	12	13
Cf 251.1	80	Dy	66					204.4		<u>×</u>	114.8	i n	49	;	69.7	Ga) <u>~</u>	20.9	A	5	10.01	ם מ	J 4	5			ША		3
Es 254.1	004.7	H0	67					2.102	Pb	2 8	118./	Sn	ر ت		72.59	Ge	7 %	20.07	38.00	? '	1,6,91	- - - -	J	_			AAI	N.V.	14
Fm 257.1	100	1673	6					200.5	ומ	5 8	0.121	SD D	2 2		/4.92		energer propries	22	10 O7	J 5		1 17	Z -	7			VA	VA IS	15
Md 258.1	101	168 Q	9					210	710	5 9	0.771	127 6	3 %	6	18.90	De	7))		3	2 5)	8			417	VIV	16
No 255	102	173.0	1 2	10	7	20	11	Ł	210	•	50	3.A		3	17.71	DI	J		37.45	2		19 000	7	0			2000	VIIA	17

Numbers below the symbol indicates the atomic masses; and the numbers above the symbol indicates the atomic numbers.

SOURCE: International Union of Pure and Applied Chemistry, I mills, ed., Quantities, Units, and symbols in Physical Chemistry, Blackwell Scientific publications, Boston,

1988, pp 86-98.