

UNIVERSITY OF SWAZILAND Faculty of Health Sciences

DEGREE IN ENVIRONMENTAL HEALTH

FINAL EXAMINATION PAPER 2007/2008

Title of paper : INSTRUMENTAL METHODS FOR ENVIRONMENTAL

ANALYSIS I

COURSE CODE : EHS 573

DURATION : 2 HOURS

MARKS : 100

INSTRUCTIONS : READ THE QUESTIONS & INSTRUCTIONS

CAREFULLY

: ANSWER ANY FOUR QUESTIONS

: EACH QUESTION CARRIES 25 MARKS

: WRITE NEATLY & CLEARLY

: NO PAPER SHOULD BE BROUGHT INTO NOR OUT

OF THE EXAMINATION ROOM

: BEGIN EACH QUESTION ON A SEPARATE SHEET

OF PAPER

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION IS GRANTED BY THE INVIGILATOR.

Question 1(25 marks)

(a)	Distinguish between classical and instrumental methods of analysis.	[2]					
(b)	What are the unique advantages of instrumental methods of analysis over the classical methods?	ne [4]					
(c)	List the principal classes of chemical instrumentation. Give two specific ex of instrumental techniques from each principal class given.	amples [6]					
(d)	Using a labeled diagram, show the basic components of an instrument for chemical/environmental analysis, discuss the functions of any one of the components and give an example in named equipment.						
(e)	List the salient performance characteristics of an instrument for environme analysis.	ntal [5]					
Que	estion 2(25 marks)						
(a)	A given light radiation passes basic components from a medium x, to another medium y, having refractive indices n_x and n_y respectively. Given that $n_x > n_y$. In which of the two media does the radiation have a greater: (i) Wavelength; (ii) Frequency; (iii) Energy? [3]						
(b)	 (i) Define the terms 'Absorbance' and 'Transmittance' for an absorbin medium. (ii) Obtain an expression relating the two terms i.e.A & T. 	ng [2] [4]					
(c)	 For a medium that obeys Beer's law; (i) Discuss the variation of absorbance with the pathlength and conce of the solution respectively at a given wavelength. (ii) For a poorly absorbing medium, which cell would you prefer to us why? - a 1.00-cm of a 4.00-cm cell. 	[3]					
(d)	A bismuth(III) complex solution has a molar absorptivity of 9.32 x 10 ³ M 470nm. (i) Calculate the absorbance of a 6.24 x 10 ⁻⁵ M solution of the comple 470nm in a 2.00-cm cell. (ii) Estimate the %T of the solution in d(i). (iii) What is the concentration (in M), of the complex in a solution have same absorbance an the described in d(i) when measured at 470nd 4.00-cm cell?	ex at					

- (a) Briefly discuss the causes of, and the corresponding corrections for true (real) deviations for Beer's law. [6]
- (b)

 (i) What factors are responsible for instrumental deviation from Beer's law?

 [3]
 - (ii) How can instrumental deviation be generally minimized? [1]
- (c) When a beam of polychromatic radiations, made up of two wavelengths, λ and λ¹ with molar absorptivities of ∈ and ∈¹ respectively pass through an absorbing solution, the combined, A_c, is given by:

$$A_{c} = \log(P_{o} - P_{o}^{1}) - \log(P_{o}10^{-ebc} + P_{o}^{1}10^{-ebc}). \text{ What deductions can be made when:}$$
(i) $\epsilon = \epsilon^{1}$ (iii) $\epsilon > \epsilon^{1}$ (iii) $\epsilon < \epsilon^{1}$ [6]

(d)

- (i) Discuss the characteristics and effects of stray radiations during absorbance measurements.
- (ii) Give the expression relating the measured absorbance, A_m in the presence of the stray radiation, P_s (Radiant power of stray radiation), P_o and P.
- (iii) How is the value of the observed absorbance affected when the solution is highly concentrated and $P_s \approx P + P_s$?
- (iv) Compare A_m(measured absorbance) with A (true absorbance) and hence deduce the type of deviation (positive or negative) from Beer's law caused by stray radiations. [9]

Question 4(25 marks)

- (a) What is a monochromator? [2]
- (b) For a spectrophotometer, list the components of a monochromator system and state the respective functions of each component given. [6]
- (c) For each of the following spectral regions, suggest an appropriate monocromator prism material:
 - (i) Visible (ii) UV (iii) IR Give an appropriate reason for your choice.
- (d) State the advantages and weaknesses of "diffraction gratings" when compared with a "glass prism" as monochromators for spectrophotometers. [4]

(e)

- (i) Explain the term 'Disperson of a prism'. Hence, briefly describe the working principles of a prism as a monochromator.
- (ii) What are the factors that increase the resolution of a 'prism' and 'diffraction gratings' [8]

Question 5(25 marks)

- (a) Distinguish between a selective detector and non-selective detector. Give an example of each type. [3]
- (b) As briefly as possible, discuss the design, the region of use and the working principles of each of the following spectrophotometer detectors:
 (i) The Photomultiplier tube, (ii) The thermocouple.
 - Give one major weakness of the Thermocouple as a detector. [15]
- (c) What are the necessary precautions that should be taken in the handling of a cuvette/cell, during a UV spectrophotometeric analysis? [4]
- (d) Describe how you would prepare a KBr pellet for an IR spectroscopic analysis of a sample. [3]

Quantity	Symbol	Value	General data and		
Speed of light†	c	2.997 924 58 × 10 ⁸ m s ⁻¹	··· fundamental		
Elementary	.		constants-		
Faraday constant	$F = eN_{\lambda}$	9.6485 × 10⁴ C mol ⁻¹			
Boltzmann constant	k	1.380 66 × 10 ⁻²³ J K ⁻¹			
Gas constant	$R = kN_{A}$	8.31451 J K ⁻¹ mol ⁻¹			
	•	8.20578×10^{-2} dm ³ atm K ⁻¹ mol	-1 .		
		62.364 L Torr K ⁻¹ mol ⁻¹	· ·		
Planck constant	h	$6.62608 \times 10^{-34} \text{ J s}$			
	$\hat{n} = h/2\pi$	$1.054^{\circ}57 \times 10^{-34} \mathrm{J s}$			
Avogadro constant	N.	$6.02214\times10^{23}\mathrm{mol^{-1}}$			
Atomic mass unit	U	$1.66054 \times 10^{-27}\mathrm{kg}$			
Mass of electron	m_{ullet}	9.10939×10 ⁻³¹ kg			
proton	. m ₂	$-1.672-62 \times 10^{-27} \text{ kg}$			
neutron	m, · · · - · · - · ·	1.674 93 × 10 ⁻²⁷ kg	•		
Vacuum	μ_{2}	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$			
permeability†		$4\pi \times 10^{-7} \mathrm{T}^2 \mathrm{J}^{-1} \mathrm{m}^3$	्रिक्त क्षेत्र		
Vacuum permittivity	$\varepsilon_0 = 1/c^2 \mu_0$	$8.854 \ 19 \times 10^{-12} \ J^{-1} \ C^2 \ m^{-1}$	***		
	$4\pi\varepsilon_0$	$1.11265 \times 10^{-10} \text{ J}^{-1} \text{ C}^2 \text{ m}^{-1}$			
Bohr magneton	$\mu_s = e fi/2m_s$	9.274 02 × 10 ⁻²⁴ J T ⁻¹			
Nuclear magneton	$\mu_N = efi/2m_p$	$5.05079 \times 10^{-27} \text{J} \text{T}^{-1}$			
Electron <i>g</i> value	\mathcal{G}_ullet	2.002 32.			
Bohr radius	$a_0 = 4\pi \epsilon_0 \hbar^2/m_{\bullet} \epsilon$	$5.29177 \times 10^{-11} \mathrm{m}$			
Rydberg constant	$R_{a} = m_{a}e^{4}/8h^{3}c$:	1.097 37 × 10 ⁵ cm ⁻¹	•		
Fine structure constant	$c = \mu_0 e^2 c/2h$	7.29735×10^{-3}			
Gravitational constant	G	$6.67259 \times 10^{-11} \mathrm{N m^2 kg^{-2}}$	•		
Standard î acceleration of free fall†	. g	_ 2.806 65 m.s ⁻²	† Exact (defined) values		
f p	n µ m	c d k M	G Prefixes		
femto pico	nano micro milli	centi deci kilo mega g	iga		
10-15 10-12	10-9 10-6 10-3		10°		

PERIODIC TABLE OF ELEMENTS

	*	*	7	6	ر. ا	4	w	2	_	PERIODS
	**Actinide Series	*Lanthanide Series	223 Fr 87	132.91 Cs 55	85.468 Rb 37	39.098 K	22.990 Na 11	6.941 Li 3	1.00x	> -
	Series	le Series	226.03 Ra 88	137.33 Ba 56	87.62 Sr 38	.40.078 Ca 20	24.305 Mg 12	9.012 Be 4		11/2
_		, in		138.91 * L :a 57	88.906 Y 39	44.956 Sc 21				3
	232.04 Th 90	140.12 Cc 58	(261) Rf 104	178.49 III 72	91.224 Z r 40	47.88 Ti 22				14
() indi	231.04 Pa 91	140.91 Pr 59	Ha 105	Ta 73	92.906 NIb	50.942 V 23				817
() indicates the mass number of the isotope with	238.03 U 92	144.24 Nd 60	Unh 106	74	Mo 42	51.996 Cr 24	TRAN			6
	237.05 Np 93	(145) Pm 61	Uns 107	75	Tc 43	Mn 25	TRANSITION ELEMENTS			7
	(244) Pu 94	150.36 Sm 62	Uno 108	Os 76	Ru 44	Fe 26	ELEM			8 G
	(243) Am 95	151.96 Eu	Une 109	Ir 77	Rh 45	Co 27	ENTS			GROUPS 9 VIIIIB
ope with	(247) Cm 96	157.25 Gd 64	Uun 110	Pt 78	Pd 46	Ni 28	09.85			10
		158.93 Tb 65		Au 79	i	- 1	63 546	Symbol Atomic No.	Atomi	==
the tongest naij-tije.	(251) Cf 98	162.50 Dy 66		Hg 80	Cd 48 200.59	Zn 30	65.39	ibol	Atomic mass —¥ 10.81	12
rije.	(252) Es 99	164.93 110 67		T1	In 49 204.38	Gn 31	AI 13	★ B 26.982	10.811	13
	(257) Fm 100	167.26 Er 68	-	Pb 82	Sn 50 207.2	Ge 32	Si 14	C 6 28.086	12.011	14 1VA
	(258) • Md	168.93 Tm 69		83	Sb 51 208.98	As 33 121.75	P 15 74.922	N 7 30.974	14.007	V/V
	(259) No 102	173.04 Yb 70		Po 84	Te 52 (209)	Sc 34 127.60	S 16 78.96	O 8 32.06	15.999	VIV 16
	(260) Lr 103	174.97 Lu 71	GH		53 (210)	Br 35 126.90	CI 17 79.904	9 35.453	18.998	VIIA
			24	2	Xe 54 (222)	Kr 36 131.2	A1.	Nc 10 39.94	20.18	VIIIV 100 +