UNIVERSITY OF SWAZILAND Faculty of Health Sciences # **DEGREE IN ENVIRONMENTAL HEALTH** ## **FINAL EXAMINATION PAPER 2007/2008** Title of paper : INSTRUMENTAL METHODS FOR ENVIRONMENTAL **ANALYSIS I** COURSE CODE : EHS 573 DURATION : 2 HOURS MARKS : 100 INSTRUCTIONS : READ THE QUESTIONS & INSTRUCTIONS CAREFULLY : ANSWER ANY FOUR QUESTIONS : EACH QUESTION CARRIES 25 MARKS : WRITE NEATLY & CLEARLY : NO PAPER SHOULD BE BROUGHT INTO NOR OUT OF THE EXAMINATION ROOM : BEGIN EACH QUESTION ON A SEPARATE SHEET **OF PAPER** DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION IS GRANTED BY THE INVIGILATOR. # Question 1(25 marks) | (a) | Distinguish between classical and instrumental methods of analysis. | [2] | | | | | | |-----|--|------------------|--|--|--|--|--| | (b) | What are the unique advantages of instrumental methods of analysis over the classical methods? | ne
[4] | | | | | | | (c) | List the principal classes of chemical instrumentation. Give two specific ex of instrumental techniques from each principal class given. | amples
[6] | | | | | | | (d) | Using a labeled diagram, show the basic components of an instrument for chemical/environmental analysis, discuss the functions of any one of the components and give an example in named equipment. | | | | | | | | (e) | List the salient performance characteristics of an instrument for environme analysis. | ntal
[5] | | | | | | | Que | estion 2(25 marks) | | | | | | | | (a) | A given light radiation passes basic components from a medium x, to another medium y, having refractive indices n_x and n_y respectively. Given that $n_x > n_y$. In which of the two media does the radiation have a greater: (i) Wavelength; (ii) Frequency; (iii) Energy? [3] | | | | | | | | (b) | (i) Define the terms 'Absorbance' and 'Transmittance' for an absorbin medium. (ii) Obtain an expression relating the two terms i.e.A & T. | ng
[2]
[4] | | | | | | | (c) | For a medium that obeys Beer's law; (i) Discuss the variation of absorbance with the pathlength and conce of the solution respectively at a given wavelength. (ii) For a poorly absorbing medium, which cell would you prefer to us why? - a 1.00-cm of a 4.00-cm cell. | [3] | | | | | | | (d) | A bismuth(III) complex solution has a molar absorptivity of 9.32 x 10 ³ M 470nm. (i) Calculate the absorbance of a 6.24 x 10 ⁻⁵ M solution of the comple 470nm in a 2.00-cm cell. (ii) Estimate the %T of the solution in d(i). (iii) What is the concentration (in M), of the complex in a solution have same absorbance an the described in d(i) when measured at 470nd 4.00-cm cell? | ex at | | | | | | - (a) Briefly discuss the causes of, and the corresponding corrections for true (real) deviations for Beer's law. [6] - (b) (i) What factors are responsible for instrumental deviation from Beer's law? [3] - (ii) How can instrumental deviation be generally minimized? [1] - (c) When a beam of polychromatic radiations, made up of two wavelengths, λ and λ¹ with molar absorptivities of ∈ and ∈¹ respectively pass through an absorbing solution, the combined, A_c, is given by: $$A_{c} = \log(P_{o} - P_{o}^{1}) - \log(P_{o}10^{-ebc} + P_{o}^{1}10^{-ebc}). \text{ What deductions can be made when:}$$ (i) $\epsilon = \epsilon^{1}$ (iii) $\epsilon > \epsilon^{1}$ (iii) $\epsilon < \epsilon^{1}$ [6] (d) - (i) Discuss the characteristics and effects of stray radiations during absorbance measurements. - (ii) Give the expression relating the measured absorbance, A_m in the presence of the stray radiation, P_s (Radiant power of stray radiation), P_o and P. - (iii) How is the value of the observed absorbance affected when the solution is highly concentrated and $P_s \approx P + P_s$? - (iv) Compare A_m(measured absorbance) with A (true absorbance) and hence deduce the type of deviation (positive or negative) from Beer's law caused by stray radiations. [9] # Question 4(25 marks) - (a) What is a monochromator? [2] - (b) For a spectrophotometer, list the components of a monochromator system and state the respective functions of each component given. [6] - (c) For each of the following spectral regions, suggest an appropriate monocromator prism material: - (i) Visible (ii) UV (iii) IR Give an appropriate reason for your choice. - (d) State the advantages and weaknesses of "diffraction gratings" when compared with a "glass prism" as monochromators for spectrophotometers. [4] (e) - (i) Explain the term 'Disperson of a prism'. Hence, briefly describe the working principles of a prism as a monochromator. - (ii) What are the factors that increase the resolution of a 'prism' and 'diffraction gratings' [8] ## Question 5(25 marks) - (a) Distinguish between a selective detector and non-selective detector. Give an example of each type. [3] - (b) As briefly as possible, discuss the design, the region of use and the working principles of each of the following spectrophotometer detectors: (i) The Photomultiplier tube, (ii) The thermocouple. - Give one major weakness of the Thermocouple as a detector. [15] - (c) What are the necessary precautions that should be taken in the handling of a cuvette/cell, during a UV spectrophotometeric analysis? [4] - (d) Describe how you would prepare a KBr pellet for an IR spectroscopic analysis of a sample. [3] | Quantity | Symbol | Value | General data and | | | |---|--|---|--|--|--| | Speed of light† | c | 2.997 924 58 × 10 ⁸ m s ⁻¹ | ··· fundamental | | | | Elementary | . | | constants- | | | | Faraday
constant | $F = eN_{\lambda}$ | 9.6485 × 10⁴ C mol ⁻¹ | | | | | Boltzmann
constant | k | 1.380 66 × 10 ⁻²³ J K ⁻¹ | | | | | Gas constant | $R = kN_{A}$ | 8.31451 J K ⁻¹ mol ⁻¹ | | | | | | • | 8.20578×10^{-2} dm ³ atm K ⁻¹ mol | -1 . | | | | | | 62.364 L Torr K ⁻¹ mol ⁻¹ | · · | | | | Planck constant | h | $6.62608 \times 10^{-34} \text{ J s}$ | | | | | | $\hat{n} = h/2\pi$ | $1.054^{\circ}57 \times 10^{-34} \mathrm{J s}$ | | | | | Avogadro
constant | N. | $6.02214\times10^{23}\mathrm{mol^{-1}}$ | | | | | Atomic mass unit | U | $1.66054 \times 10^{-27}\mathrm{kg}$ | | | | | Mass of electron | m_{ullet} | 9.10939×10 ⁻³¹ kg | | | | | proton | . m ₂ | $-1.672-62 \times 10^{-27} \text{ kg}$ | | | | | neutron | m, · · · - · · - · · | 1.674 93 × 10 ⁻²⁷ kg | • | | | | Vacuum | μ_{2} | $4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$ | | | | | permeability† | | $4\pi \times 10^{-7} \mathrm{T}^2 \mathrm{J}^{-1} \mathrm{m}^3$ | ्रिक्त क्षेत्र | | | | Vacuum
permittivity | $\varepsilon_0 = 1/c^2 \mu_0$ | $8.854 \ 19 \times 10^{-12} \ J^{-1} \ C^2 \ m^{-1}$ | *** | | | | | $4\pi\varepsilon_0$ | $1.11265 \times 10^{-10} \text{ J}^{-1} \text{ C}^2 \text{ m}^{-1}$ | | | | | Bohr magneton | $\mu_s = e fi/2m_s$ | 9.274 02 × 10 ⁻²⁴ J T ⁻¹ | | | | | Nuclear
magneton | $\mu_N = efi/2m_p$ | $5.05079 \times 10^{-27} \text{J} \text{T}^{-1}$ | | | | | Electron <i>g</i>
value | \mathcal{G}_ullet | 2.002 32. | | | | | Bohr radius | $a_0 = 4\pi \epsilon_0 \hbar^2/m_{\bullet} \epsilon$ | $5.29177 \times 10^{-11} \mathrm{m}$ | | | | | Rydberg constant | $R_{a} = m_{a}e^{4}/8h^{3}c$: | 1.097 37 × 10 ⁵ cm ⁻¹ | • | | | | Fine structure constant | $c = \mu_0 e^2 c/2h$ | 7.29735×10^{-3} | | | | | Gravitational constant | G | $6.67259 \times 10^{-11} \mathrm{N m^2 kg^{-2}}$ | • | | | | Standard î
acceleration
of free fall† | . g | _ 2.806 65 m.s ⁻² | † Exact (defined) values | | | | | | | | | | | f p | n µ m | c d k M | G Prefixes | | | | femto pico | nano micro milli | centi deci kilo mega g | iga | | | | 10-15 10-12 | 10-9 10-6 10-3 | | 10° | | | # PERIODIC TABLE OF ELEMENTS | | * | * | 7 | 6 | ر.
ا | 4 | w | 2 | _ | PERIODS | |--|---------------------------|---------------------------|---------------------------|-------------------------------|----------------------------|----------------------------|---------------------|----------------------|----------------------|-----------------------| | | **Actinide Series | *Lanthanide Series | 223
Fr
87 | 132.91
Cs
55 | 85.468
Rb
37 | 39.098
K | 22.990
Na
11 | 6.941
Li
3 | 1.00x | > - | | | Series | le Series | 226.03
Ra
88 | 137.33
Ba
56 | 87.62
Sr
38 | .40.078
Ca
20 | 24.305
Mg
12 | 9.012
Be
4 | | 11/2 | | _ | | , in | | 138.91
* L :a
57 | 88.906
Y
39 | 44.956
Sc
21 | | | | 3 | | | 232.04
Th
90 | 140.12
Cc
58 | (261)
Rf
104 | 178.49
III
72 | 91.224
Z r
40 | 47.88
Ti
22 | | | | 14 | | () indi | 231.04
Pa
91 | 140.91
Pr
59 | Ha
105 | Ta
73 | 92.906
NIb | 50.942
V
23 | | | | 817 | | () indicates the mass number of the isotope with | 238.03
U
92 | 144.24
Nd
60 | Unh
106 | 74 | Mo
42 | 51.996
Cr
24 | TRAN | | | 6 | | | 237.05
Np
93 | (145)
Pm
61 | Uns
107 | 75 | Tc 43 | Mn
25 | TRANSITION ELEMENTS | | | 7 | | | (244)
Pu
94 | 150.36
Sm
62 | Uno
108 | Os
76 | Ru
44 | Fe
26 | ELEM | | | 8
G | | | (243)
Am
95 | 151.96
Eu | Une
109 | Ir 77 | Rh
45 | Co
27 | ENTS | | | GROUPS
9
VIIIIB | | ope with | (247)
Cm
96 | 157.25
Gd
64 | Uun
110 | Pt 78 | Pd
46 | Ni
28 | 09.85 | | | 10 | | | | 158.93
Tb
65 | | Au
79 | i | - 1 | 63 546 | Symbol
Atomic No. | Atomi | == | | the tongest naij-tije. | (251)
Cf
98 | 162.50
Dy
66 | | Hg
80 | Cd
48
200.59 | Zn
30 | 65.39 | ibol | Atomic mass —¥ 10.81 | 12 | | rije. | (252)
Es
99 | 164.93
110
67 | | T1 | In
49
204.38 | Gn
31 | AI
13 | ★ B 26.982 | 10.811 | 13 | | | (257)
Fm
100 | 167.26
Er
68 | - | Pb
82 | Sn
50
207.2 | Ge
32 | Si
14 | C
6
28.086 | 12.011 | 14
1VA | | | (258)
• Md | 168.93
Tm
69 | | 83 | Sb
51
208.98 | As
33
121.75 | P
15
74.922 | N 7 30.974 | 14.007 | V/V | | | (259)
No
102 | 173.04
Yb
70 | | Po
84 | Te
52
(209) | Sc
34
127.60 | S
16
78.96 | O
8
32.06 | 15.999 | VIV
16 | | | (260)
Lr
103 | 174.97
Lu
71 | GH | | 53
(210) | Br
35
126.90 | CI
17
79.904 | 9
35.453 | 18.998 | VIIA | | | | | 24 | 2 | Xe
54
(222) | Kr
36
131.2 | A1. | Nc
10
39.94 | 20.18 | VIIIV
100 + |