UNIVERSITY OF SWAZILAND DIPLOMA IN ENVIRONMENTAL HEALTH SCIENCE FINAL EXAMINATION PAPER 2007

TITLE OF PAPER : INTEGRATED BASIC SCIENCES

COURSE CODE : HSC 103

TIME : 3 HOURS

TOTAL MARKS : 100 MARKS

INSTRUCTIONS : ANSWER FIVE QUESTIONS ONLY

: EACH QUESTION IS 20 MARKS

: AT LEAST TWO QUESTIONS MUST BE ANSWERED FROM EACH SECTION.

: A PERIODIC TABLE AND DATA SHEETS ARE PROVIDED WITH THIS EXAMINATION PAPER

: NO FORM OF ANY PAPER SHOULD BE BROUGHT INTO NOR TAKEN OUT OF THE EXAMINATION ROOM

: BEGIN THE ANSWER TO EACH QUESTION ON A SEPARATE SHEET OF PAPER

ALL CALCULATIONS/WORKOUT DETAILS SHOULD BE SUBMITTED WITH YOUR ANSWER SHEET(S)

DO NOT OPEN THIS EXAMINATION PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

:

SECTION A

ANSWER AT LEAST TWO QUESTIONS FROM THIS SECTION

QUESTION 1.

(a) A body initially moving at 4 m/s accelerates to 16 m/s in 4 s, and then moves at constant velocity for 5 s after which it accelerates to a velocity of -20 m/s in 5 s. Sketch

(i) the velocity-time graph,	(5 marks)
(ii) the acceleration-time graph, and	(6 marks)
(iii) the distance-time graph for this motion.	(7 marks)

(b) A body initially at rest free falls over a height h = 10 m. What is its velocity when it hits the ground? (2 marks)

QUESTION 2

(a) The system shown in Figure 1 is in equilibrium. Find the tension in each cord. (8 marks)

Figure 1.

- (b) A body mass m = 15 kg falls from rest from a height h. Use energy methods to find its kinetic energy after it falls over a height s = 10 m. (6 marks)
- (c) A bullet of mass m = 100 g moving with a velocity of $v_0 = 300$ m/s strikes and embeds itself in a stationary block of mass M = 2 kg resting on a frictionless surface. What is the velocity of the block and bullet after the collision? (6 marks)

QUESTION 3

(a) A steel wire of length l = 5 m and cross-sectional area A = 0.05 cm² suspends a mass of 5 kg. The wire stretches by 0.75 mm under the load.

(i) What is the tensile stress on the wire?	(3 marks)
(ii) What is the tensile strain on the wire?	(2 marks)
(iii) What is the Young's modulus for the wire?	(2 marks)

- (b) State Pascal's law and give an example of its application in everyday life. (5 marks)
- (c) Ice of mass $m_i = 124$ g at -10°C is mixed with a mass of water $m_w = 500$ g at 18°C in a perfectly insulating container to make an ice bath. How much ice is left over after the ice stops melting? (8 marks)

QUESTION 4

- (a) An industrial machine produces a sound at an average power of 100 W. At what distance r from the source is the sound level at the threshold of pain? (6 marks)
- (b) The near point of a person is 5 m. What must be the focal length of the spectacle lenses for the person to read a newspaper at a distance of 25 cm? (4 marks)
- (c) Discuss with the aid of equations why it is unsafe to connect too many electrical appliances to one wall plug.

 (6 marks)
- (d) A person with wet skin is part of the circuit shown in Figure 2. The voltage drop across R is $\Delta v = 49.5$ V, while the resistance of the person r = 1000 Ω . Determine whether the current through the person is dangerous. (4 marks)

Figure 2.

GENERAL DATA SHEET

Speed of light in vacuum $c = 2.9978 \times 10^8 \text{ m/s}$ Speed of sound in air = 334 m/sGravitational acceleration = 9.80 m/s^2 Universal gravitational constant $G = 6.67 \times 10^{-11} \text{ N m}^2/\text{kg}^2$ Density of mercury = $1.36 \times 10^4 \text{ kg/m}^3$ Density of water = 1000 kg/m^3 Standard atmospheric pressure = $1.013 \times 10^5 \text{ Pa}$ Gas constant R = 8.314 J/(K mol)Avogadro's number $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ $I_0 = 10^{-12} \text{ W/m}^2$ 1 calorie = 1 c = 4.186 J1 food calorie = 1 Calorie = $1C = 10^3$ calories = 4.186×10^3 J c(water) = 4186 J/(kg K)c(ice) = 2090 J/(kg K) c(steam) = 2079 J/(kg K) $L_f(ice) = 3.33 \times 10^5 \text{ J/kg}$ $L_v(water) = 2.260 \times 10^6 \text{ J/kg}$

$$k = \frac{1}{4\pi\varepsilon_0} = 8.99 \times 10^9 \text{ Nm}^2/\text{C}^2$$

Charge of an electron = -1.6 x 10^{-19} C Charge of a proton = +1.6 x 10^{-19} C 1 atomic mass unit = 1 amu = 1 u = 1.66 x 10^{-27} kg Electron mass, $m_e = 9.109 \times 10^{-31}$ kg Proton mass, $m_p = 1.673 \times 10^{-27}$ kg Neutron mass $m_n = 1.675 \times 10^{-27}$ kg

SECTION B

ANSWER AT LEAST TWO QUESTIONS

QUESTION 5 [20 MARKS]

- a) Convert the following figures to the units indicated: [6]
 - i) 1.02 kg g
- 72 pulse/min.....pulses/sec
- 25 mL.....L ii)
- 20 oz/gal.....g/L vi)
- $\begin{array}{lll} 50~\mu g.....mg \\ 1.2x 10^{24}~atoms....moles \end{array}$ iii)
- iv)

Recall: 1 in. = 2.54 cm

1 minute = 60 secs $1 \, gal = 3.8 \, L$

1 oz = 28.4 g $6.023x10^{23} = 1$ mole

An order for medication reads: "Give 1.49 mg per kilogram of body weight." **b**) How much medication should be given to a patients of 165 lb. [2]

1 lb = 0.4536 kg

v)

A nurse by the name of Nontobeko recorded the temperature of a patient as 98.8 °F. c) Another nurse "Velaphi" recorded the temperature of another patient as 38.2 °C. Which patient has fever? [2] Useful equation:

$$^{o}F = \frac{9}{5} ^{o}C + 32^{o}$$

- c) Write short notes explaining the differences between any one of the following pairs:
 - i) Accuracy and precision
- [2]
- Systematic and random errors ii)
- [2]
- d) The following weights of tablets were given to pregnant women to use as Iron supplements: 5.8 g, 6.2 g, 5.6 g and 5.9 g. Calculate:
 - The mean [2] i)
 - Standard deviation [2] ii)
 - iii) Coefficient of variation [1]
 - iv) % Relative error given that the right weight for iron supplementation as recommended by the WHO is 5.5 g.[1]

Useful Formulae:

standard deviation
$$S_x = \sqrt{\frac{\sum_{i=1}^{N} (\bar{x} - x_i)^2}{N - 1}}$$
; mean $\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N}$

QUESTION 6 [20 MARKS]

- a). Draw Lewis structures or diagrams to show and name the type of bonding for each of the following: [8]
 - (i) calcium chloride
 - (ii) NH_{Δ}^{+}
 - (iii) H₂O

$$NH_3 + BF_3 \rightarrow NH_3BF_3$$

- (iv) CH₂CH₂
- b). i) Using Hunds rule, Agfbau builing up principle and the periodic table write the electronic configurations of **any Two** of the following elements. [6]
 - ii) Also indicate their environmental hazards and most likely source of the **Two** you have chosen in c(i): [6]

Arsenic

Lead

Cadmium

Mercury

c) An antacid tablet was given to a patient to relieve stomach discomfort. Given that the antacid was magnesium hydroxide, Mg(OH)₂ which reacts with hydrochloric acid. How many grams acid in the stomach will 1.50 g antacid tablet neutralize?

QUESTION 7 [20 MARKS]

A sample suspected to be a dangerous drug was confiscated by police for forensic analysis. The sample was suspected to be the dangerous drug, phencyclidine, known as angel dust, whose molecular formula is $C_{17}H_{25}N$. The sample was found to have a percentage composition of 83.71%C, 10.42% H, and 5.61% N.

- i). Define the difference between empirical and molecular formular [5]
- i). From the formula C₁₇H₂₅N find the percentage composition of C, H and N [12]
- ii). From a(i) above, Is this sample the suspected drug? [2]. Give a reason. [1]

QUESTION 8 [20 MARKS]

- a) i) Define a buffer solution [2]
 - ii) Name three kinds of buffers found in the body. [3]
- b) Briefly discuss any one of the following: [6]
 - i) Respiratory Acidosis
 - ii) Metabolic Acidosis

In your discussion include the cause, the symptoms and the treatment.

56

c) A 19 year old man is admitted to hospital.. On admission his laboratory results were as follows:

Blood pressure	90/20 mm Hg	Sodium	132mmol/L
Deep respirations	35/min	Potassium	6.5mmol/L
Pulse	120/min	pН	6.75
glucose	20 mmol/l	PCO ₂	11 mm Hg
protein	100 μg/dl	Blood ketones	positive

- i) Using the data given diagnose the condition of the patient, giving specific reasons for your diagnoses. [6]
- ii) What treatment would you prescribe. [3]

Question 9 [20 Marks]

a) Write short notes on the following terms:

[12]

- i) isotonic solutions
- ii) hypotonic solutions
- iii) hypertonic solutions

Give examples for each and define the use or dangers of each in the body.

b) Balance each of the following chemical equations.

i)
$$C_3H_8+O_2\rightarrow CO_2+H_2O$$
 [2]

ii)
$$SO_2 + HNO_3 \rightarrow H_2SO_4 + NO$$
 [2]

iii)
$$Fe_2(SO4)_3+NH_3+H_2O \rightarrow Fe(OH)_3+(NH_4)_2SO_4$$
 [2]

An antacid tablet was given to a patient to relieve stomach discomfort. Given that the antacid was magnesium hydroxide, Mg(OH)₂ which reacts with hydrochloric acid. How many grams acid in the stomach will 1.50 g antacid tablet neutralize ?[2]

NORMAL LABORATORY VALUES FOR BLOOD TESTS

		USUAL REFERENCE
		RANGE
Specific Gravity		1.056
Hemoglobin Count Hb		Men: 14 - 18g /dL
		Women: 12 -16 g/dL
HCO ₃ Bicarbonate	24 - 28 mmol/L	24 - 28 mEq/L
Glucose	(3.6-6.1 mmol/L)	65 - 110 mg/dL
BUN (Blood Urea Nitrogen)	2.9 - 7.1 mmol/L	8 - 20 mg/dL
Ca ⁺²	(2.1-2.6 mmol/L)	8.5 - 10.3 mg/dL
CI ⁻	(96-106 mmol/L)	96 - 106 mEq/L
Cholesterol		150 - 220 mg/dL
CO ₂	24-29 mmol/L	24-29 mEq/L
PCO ₂		35-45 mmHg
PO ₂		80 - 100 mm Hg
pН		7.35 - 7.45
Fatty acids	0.3-0.8 mmol/L	0.3-2 mg/dL
Protein		6-8 μg/dL
Phosphate	1 - 1.5 mmol/L	3-4.5 mg/dL
ketone bodies		0.3-2 mg/dL
K ⁺	3.5-5 mmol/L	3.5 - 5 mEq/L
Na ⁺	136-145 mmol/L	136 - 145 mÉq/L
Uric Acid	Men: 0.18 - 0.54	Men: 3 - 9 mg/dL
	Women: 0.15 - 0.46 mmol/L	Women: 2.5 - 7.5 mg/dL
		Children: 1.5 g/L (150mg/dL)

NORMAL LABORATORY VALUES FOR BLOOD TESTS

	r	TICKLA DESERVACE
		USUAL REFERENCE
		RANGE
Specific Gravity		1.056
Hemoglobin Count Hb		Men: 14 - 18g /dL
		Women: 12 -16 g/dL
HCO ₃ Bicarbonate	24 - 28 mmol/L	24 - 28 mEq/L
Glucose	(3.6-6.1 mmol/L)	65 - 110 mg/dL
BUN (Blood Urea Nitrogen)	2.9 - 7.1 mmol/L	8 - 20 mg/dL
Ca ⁺²	(2.1-2.6 mmol/L)	8.5 - 10.3 mg/dL
Cl ⁻	(96-106 mmol/L)	96 - 106 mEq/L
Cholesterol		150 - 220 mg/dL
CO ₂	24-29 mmol/L	24-29 mEq/L
PCO ₂		35-45 mmHg
PO ₂		80 - 100 mm Hg
pН		7.35 - 7.45
Fatty acids	0.3-0.8 mmol/L	0.3-2 mg/dL
Protein		6-8 μg/dL
Phosphate	1 - 1.5 mmol/L	3-4.5 mg/dL
ketone bodies		0.3-2 mg/dL
K ⁺	3.5-5 mmol/L	3.5 - 5 mEq/L
Na ⁺	136-145 mmol/L	136 - 145 mEq/L
Uric Acid	Men: 0.18 - 0.54	Men: 3 - 9 mg/dL
	Women: 0.15 - 0.46 mmol/L	Women: 2.5 - 7.5 mg/dL
		Children: 1.5 g/L (150mg/dL)

THE PERIODIC TABLE OF ELEMENTS

	7			6			S				4			ω	,		2	,		_	Period		Group
223	Fr	87	132.9	Cs	55	85.47	Rb	37		39.10	×	19	22.99	Na	11	6.94	Li	3	1.008	Н	-	IA	
226.0	Ra	88	137.3	Ba	56	87.62	\mathbf{Sr}	38		40.08	Ca	20	24.31	Mg	12	9.01	Be	4				AII	2
257	\mathbf{Lr}	103	174.9	Lu	71	88.91	¥	39	44.96	Sc)	21										IIIB	သ
	Unq	104	178.5	Hf	72	91.22	\mathbf{Zr}	40		47.90	Ti	22							_			IVB	4
	Unp	105	180.9	Ta	73	91.22	Z	41		50.94	<	23										VВ	5
	Unh	106	183.8	¥	74	95.94	Mo	42		52.01	\mathbf{Cr}	24		1	, ≤							VIB	6
_	Uns	107	186.2	Re	75	98.9	Tc	43		54.9	Mn	25			METALS							VIIB	7
	Uno	108	190.2	O _s	76	101.1	Ru	44		55.85	Fe	26								5	Z		8
	Une	109	192.2	Ir	77	102.9	Rh	45		58.71	Co	27					METAL				NON-METAL S	VIIIB	9
			195.1	Pt	78	106.4	Pd	46		58.71	Z	28					METALLOIDS			2	ΔI Ω		10
			196.9	Au	79	107.9	Ag	47		63.54	Cu	29					↑			↑		В	
			200.6	Hg	80	112.4	Cd	48		65.37	Zn	30										IIB	12
			204.4	1	81	114.8	In	49		69.7	Ga	31	26.9	A	13	10.81	В	5				IIIA	13
			207.2	Pb	82	118.7	Sn	50		72.59	Ge	32	28.09	Si	14	12:01	O	0				IVA	14
			208.9	<u>B</u> :	83	121.8	Sb	51		74.92	As	33	30397	T	G,	1401	Z	-1				VA	15
			210	Po	84	127.6	Te	52		10		24.0	32,013	Ģ	i ye	16,00		000 1				VIA	16/
			210	At	85					16.497		- 12 - 12 - 13 - 13 - 13 - 13 - 13 - 13 - 13 - 13	7. *		64 II 7 1 8	T 10/(810	13	9				VIIA	Q ₇
					X.		X	9			7	Ġ,				2005 W	Z	=			ю	VIIIA	18

l.	_	251.1	249.1	247.1	241.1	239.1	237.1	238.0	231.0	232.0	227.0	
Ħ		Cf	Bk	Cm	Am	Pu	Z Z	U	Pa	Th	Ac	Actinides
<u></u>		98	97	96	95	94	93	92	91	90	89	
167	_	162.5	158.9		151.3	150.9	146.9	144.2	140.9	140.1	138.9	
Ą		Dy	Tb	Gd	Eu	Sm		Z	Pr	Ce	La	Lanthanides
68	67	66	65	64	63	62	61	60	59	58	57	
	68 69 Er Tm 167.3 168.9 100 101 Fm Md 257.1 258.1		68 E.r 167.3 100 Fnn 257.1	67 68 Ho Er 164.9 167.3 99 100 Es Fm 254.1 257.1	65 66 67 68 Tb Dy Ho Er 158.9 162.5 164.9 167.3 97 98 99 100 Bk Cf Es Fm 249.1 251.1 254.1 257.1	65 66 67 68 Tb Dy Ho Er 158.9 162.5 164.9 167.3 97 98 99 100 Bk Cf Es Fm 249.1 251.1 254.1 257.1	65 66 67 68 Tb Dy Ho Er 158.9 162.5 164.9 167.3 97 98 99 100 Bk Cf Es Fm 249.1 251.1 254.1 257.1	65 66 67 68 Tb Dy Ho Er 158.9 162.5 164.9 167.3 97 98 99 100 Bk Cf Es Fm 249.1 251.1 254.1 257.1	65 66 67 68 Tb Dy Ho Er 158.9 162.5 164.9 167.3 97 98 99 100 Bk Cf Es Fm 249.1 251.1 254.1 257.1	65 66 67 68 Tb Dy Ho Er 158.9 162.5 164.9 167.3 97 98 99 100 Bk Cf Es Fm 249.1 251.1 254.1 257.1	65 66 67 68 Tb Dy Ho Er 158.9 162.5 164.9 167.3 97 98 99 100 Bk Cf Es Fm 249.1 251.1 254.1 257.1	58 59 60 61 62 63 64 65 66 67 68 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er 140.1 140.9 144.2 146.9 150.9 151.3 157.3 158.9 162.5 164.9 167.3 90 91 92 93 94 95 96 97 98 99 100 Th Pa U Np Pu Am Cm Bk Cf Es Fm 232.0 231.0 238.0 237.1 239.1 241.1 247.1 249.1 251.1 254.1 257.1

Numbers below the symbol indicates the atomic masses; and the numbers above the symbol indicates the atomic numbers.

SOURCE: International Union of Pure and Applied Chemistry, I mills, ed., Quantities, Units, and symbols in Physical Chemistry, Blackwell Scientific publications, Boston, 1988, pp 86-98.