UNIVERSITY OF SWAZILAND

Supplementary Examination 2005

Title of Paper

Health Sciences Mathematics

Program

Dip./BSc. Env. Health

Course Number

HSM 110

Time Allowed

Three (3) Hours

Instructions

1. This paper consists of EIGHT questions on TWO pages.

2. Answer any five (5) questions.

3. Non-programmable calculators may be used.

Special Requirements:

None

THIS EXAMINATION PAPER MAY NOT BE OPENED UNTIL PERMISSION TO DO SO IS GRANTED BY THE INVIGILATOR.

Question 1

(a) Find the quotient Q(x) and remainder R(x) when $P(x) = x^6 - x^4 + x^3 - x + 1$ is divided by $D(x) = x^2 + 1$.

[10 marks]

(b) Evaluate the following limits:

(i)
$$\lim_{x\to 3} \frac{2x^2 - 5x - 7}{x^2 - 3x + 2}$$

(ii)
$$\lim_{x\to 2} \frac{\frac{1}{x} - \frac{1}{2}}{x-2}$$

[10 marks]

Question 2

(a) Let A be an angle in Q-IV (fourth quadrant). Give exact values of $\tan A$ and $\cos 2A$, given that $\sin A = -\frac{3}{5}$.

[10 marks]

(b) Find the middle term in the expansion of $\left(y - \frac{x}{y^2}\right)^{12}$.

[10 marks]

Question 3

(a) Prove the trigonometric identity: $\frac{2 \tan x}{1 + \tan^2 x} = 2 \sin x \cos x.$

[10 marks]

(b) Find all roots of the polynomial equation $x^3 - 2x^2 - x + 2 = 0$.

[10 marks]

Question 4

(a) Convert to a sum/difference: sin 80° sin 20°.

[8 marks]

(b) For the function, find and classify all stationary points, determine intervals of increase and decrease, and sketch its graph: $y = x^3 - 3x + 1$.

[12 marks]

Question 5

(a) Find the equation of the line tangent to $y = x^2 - \sqrt{x}$ at (4, 14).

[10 marks]

Q5 (b) Use the binomial series to evaluate, correct to 4 decimal places: $\sqrt[4]{82}$.

[10 marks]

Question 6

(a) Differentiate the following: $y = \frac{x^2 + 1}{x^2 - 1}$.

[5 marks]

(b) Use EITHER Gaussian Elimination OR Crammer's rule to solve the following linear system of equations:

$$\begin{cases} 2x_1 - x_2 + 3x_3 = 7 \\ x_1 + 5x_2 + 7x_3 = 20 \\ -3x_1 + x_2 - 5x_3 = -12 \end{cases}$$

[10 marks]

(c) Find value(s) of c such that the vectors a = (c, -2, 1) and b = (2c, c, -4) are orthogonal. [5 marks]

Question 7

(a) Use the definition of the derivative to find f'(x), given that $f(x) = x^2 - x$.

[10 marks]

(b) A ladder 10 m long leans against a vertical wall. If the bottom of the ladder is being pulled away from the wall at a rate of 50 cm/s, how quickly is the top of the ladder descending down the wall when the base of the ladder is 4 m from the wall?

[10 marks]

Question 8

(a) For the following function, evaluate y'':

$$y=\sqrt{2x-1}.$$

[5 marks]

(b) Differentiate the following:

$$y = e^{2x} \ln(x^2 - 2x).$$

[5 marks]

(c) A new property owner has 800 m of fencing with which to fence off his rectangular plot of land. If the shape of the plot is rectangular, and three sides are to be fenced (as neighbours already have a fence bordering the third side), determine the dimensions of the field of maximum area that can be enclosed by the fencing available.

[10 marks]