UNIVERSITY OF SWAZILAND **Faculty of Health Sciences**

DEGREE IN ENVIRONMENTAL HEALTH SCIENCES **FINAL EXAMINATION PAPER 2005**

TITLE OF PAPER

: WATER DISTRIBUTION AND SEWERAGE

COURSE CODE : EHS 544

DURATION :

3 HOURS

MARKS

100

INSTRUCTIONS

READ THE QUESTIONS & INSTRUCTIONS

CAREFULLY

ANSWER ONLY FIVE QUESTIONS

EACH QUESTION CARRIES 20 MARKS.

WRITE NEATLY & CLEARLY

NO PAPER SHOULD BE BROUGHT INTO OR

OUT OF THE EXAMINATION ROOM.

BEGIN EACH QUESTION ON A SEPARATE

SHEET OF PAPER.

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION IS GRANTE BY THE INVIGILATOR.

WATER DISTRIBUTION AND SEWERAGE FINAL EXAMINATION FOR THE FIFTH YEARS

QUESTION 1:

Using the information provided in figure 1 and attached tables design the distribution network. Calculate the design population for the next 10 years; the mean daily demand; the peak flow, peak flow per standpipe and the sizes of the reservoir and pipeline.

Given information:

- There are 10 people per homestead
- Design population = present population $(1+r)^{10}$
- Population annual growth rate, r = 3%
- Per capita consumption per day = 30 litres
- Peak flow factor = 4
- Standard reservoir sizes are 30m³, 45m³, 60m³, 75m³, 90m³ and 120m³
- Standard flow per standpipe = 0.25 l/s
- $^{\circ}$ Velocity = 0.4 to 0.99m/s

[20 marks]

QUESTION 2

a) A pipeline diameter of 300mm and 80 m long contains two 90° elbows and one gate valve. Allowing for sharp pipe entry and exit losses, calculate the equivalent pipe length and the total head loss when the flow rate is $0.1 \text{ m}^3\text{s}^{-1}$ and the valve is fully open. Take the friction factor f = 0.003.

[16 marks]

b) Write short notes on shallow sewerage

[4 marks]

QUESTION 3

a) Estimate the energy (head) loss along a short length of pipe suddenly enlarging from a diameter of 350mm to 700mm and conveying 300 litres per second of water. If the pressure at the entrance of the flow is 10⁵ N/m² find the pressure at the exit of the pipe. What would be the energy loss if the flow were to be reversed with a contraction coefficient of 0.62?

[15 marks]

b) A rectangular orifice 300mm wide and 500mm deep placed with the upper edge in a horizontal position 0.90m vertically below the water surface in a vertical sidewall of a tank, is discharging to the atmosphere. Calculate the rate of flow through the orifice if its discharge coefficient is 0.62.

[5 marks]

QUESTION 4

Multiple choice: Write true or false against each letter corresponding to the following statement as they apply to water distribution and sewerage

- a) For steady conditions, total inflow to a junction is equal to total outflow from it.
- b) In any fluid under gravitational attraction, pressure increases with increase of height.
- c) For steady flow at any junction the algebraic sum of all the mass flows must not necessarily be zero.
- d) In a fluid at rest there cannot be shear forces.
- e) In a fluid at rest pressure in all directions at a point is not equal.
- f) Absolute pressure is equal to gauge pressure minus atmospheric pressure.
- g) When pressures are expressed as head, it is essential that the mass density is given or the fluid named.
- h) Energy losses in sudden transitions are due to the formation of eddies and pressure loss dissipating in the form of heat energy.
- i) The maximum gauge pressure of water that can be measured by means of a piezometer tube 2m high is 19.62 x 10³ Nm⁻².
- j) A fluid moving through a pipeline is not subjected to energy losses from various sources such as continuous resistance exerted by the pipe walls.

[20 marks]

QUESTION 5

Multiple choice: Write true or false against each letter corresponding to the following statement as they apply to water distribution and sewerage

- a) The hydraulic grade line shows the elevation of the velocity head along the pipe.
- b) For the flow of a real fluid through a pipe or other conduit, the velocity will not vary from wall to wall.
- c) Except in nuclear processes, matter is neither created nor destroyed.
- d) Sewers are designed to be laid at a gradient which ensures that peak flows carry away any solids deposited during periods of low flow.
- e) Pressures measured below atmospheric pressure are known as gauge pressures.
- f) For a common block shallow sewer the self cleansing velocity should be 0.2m/s and minimum diameter should be 50m and the minimum gradient 1 in 150.
- g) Pipe network analysis involves the determination of the pipe flow rates and pressure heads which satisfy the continuity and energy conversation equations.
- h) The depth of flow to the diameter of sewer (d/D) at peak flow should be 0.2 minimum and 0.8 maximum respectively.
- i) For the design of shallow sewers, the minimum peak flow should be 2.2 litres/second.
- j) Conventional sewerage is too expensive; small bore sewerage, with several households connected to individual solid interceptor tanks, is a possibility and is low-cost that shallow sewers.

[20 marks]

QUESTION 6

Use the information provided and calculate the valves of ΔQ , adjusted Q for both loops 1 and 2.

Loop	Pipe	Q (l/s)	k	հ ե (m)	h _L /Q	Q
1	AB	120.00	797.0	11.48	?	?
	BE	10.00	33877.0	3.39	?	?
	EF	-60.00	11229.1	-40.42	7	7
	FA	-100.00	836.6	-8.36	?	?
				$\Sigma =$?	?
2	BC	50.00	11359.7	28.40	?	?
	CD	10.00	33877.0	3.39	?	?
	DE	-20	12338.9	-4.94	7	7
	EB	-24.23	31232.9	-18.34	?	?
				$\Sigma =$?	= ?

[20 Marks]

Calculation sheet for Figure 1

	10		9		œ		7		o		5		4		ω		2				7
SP7	SP6	SP6	J3	SP5	J3	J3	1	SP4	J2	SP3	SP2	SP2	J2	J2	11	1 ل	SP1	SP1	Res	Reservoir	Node N
7	SP7	96	SP6	5	SP5		J3	-24	SP4	ω	SP3	2	SP2		J2		11		SP1	voir	Node
																					(m)
			2000000				30000						200000								(m)
																					(m) Calculated Opted (m) head (m)
					888888						33333		32000				333533				Opted
																					(m)
																					head (m) head (m)
																					head (m)
																					l/s
																					m/s (
																					Caculated
																					Caculated Standard
							ANDROVA - THE														100
																					m/s Caculated Standard

Source Megapipe

Figure 8.6: Nomograph for HDPE and steel.

The nomogram is based on the Pranti-Coalbrook formula using a k factor of: k=0.007mm Factors applicable to other formulae are:

Hazen Williams......c=150

Manning n=0.010

8.13

Darcy roughness factor..... =0.007

Flow Nomogram

Source Dura pipe

Figure 8.7: Nomograph for uPVC pipes

Figure 8.5: Hazen Williams chart C = 120

14424/Volume 2 Chapter 8/BW/ir

EQUATIONS AND TABLES

1. The Manning equation:

$$Q = \underline{A} R^{2/3} S_o^{1/2}$$
, where $A =$ area of flow
$$P = \text{wetted perimeter}$$
$$R = A/P$$
$$S = \text{bed slope}$$
$$n = Manning roughness coefficient$$

- 2. Head loss $(h_L) = (v^2 v^2)/2g$
- 3. Energy equation:

$$\underline{P}_1 + \underline{V}_1^2 = \underline{P}_2 + \underline{V}_2^2 + \underline{h}_L$$

$$\rho g = 2g \qquad \rho g = 2g$$

- 4. Continuity of flow: $Q = A_1V_1 = A_1V_2$
- 5. $h_L = (\frac{1}{C_c} 1)^2 \frac{V}{2g}^2$

6.
$$Q = 2/3 C_d \sqrt{[2g B (H_1^{3/2} - H_2^{3/2})]}$$

7.
$$Q = \{\underline{a_1} \} \sqrt{[2gh \ (\underline{\rho_{man}} - 1)]}$$

$$(m^2 - 1)^{1/2} \rho$$

8.
$$I_e = Kd/4f$$

9.
$$h_f = 4f(I + I_e) \frac{V^2}{2dg}$$

Fitting	Loss coefficient, K							
Gate valve (open to 75% shut)	0.25 → 25							
90° elbow	0.9							
Sharp pipe entry	0.5							
Sharp pipe exit	0.5							
Pipe exit	1.0							
45° elbow	0.4							
Large radius 90° bend	0.6							

Table 1 Head loss coefficients for a range of pipe fittings.

