UNIVERSITY OF ESWATINI

FACULTY OF EDUCATION

DEPARTMENT OF EDUCATIONAL FOUNDATIONS AND

MANAGEMENT

2021

FIRST SEMESTER EXAMINATION PAPER

APRIL, 2021

TITLE OF PAPER:

INTRODUCTION TO EDUCATIONAL RESEARCH

COURSE CODE:

EFM 515

TIME ALLOWED:

Three (3) hours

INSTRUCTIONS

1. THIS PAPER IS DIVIDED INTO **TWO**

SECTIONS (A AND B). ANSWER ANY

TWO QUESTIONS FROM EACH SECTION

2. UTILISE THE ATTACHED STATISTICAL

FORMULAS AND TABLES WHERE

NECESSARY.

TOTAL MARKS

100

THIS PAPER IS NOT TO BE OPENED UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE INVIGILATOR.

SECTION A

Answer any two questions in this section.

Question 1

Using practical examples, differentiate among four kinds of research questions which indicate different purposes of educational research. [Total 25 marks]

Question 2

Compare and contrast longitudinal survey research designs and cross-sectional survey research designs according to their six characteristics. [Total 25 marks]

Question 3

Describe eight steps in analysing textual data through the constant comparative method in qualitative educational research. [Total 25 marks]

SECTION B

Answer any two questions in this section.

Question 4

An educational researcher exploring Mathematics anxiety administered a Mathematical test to 12 learners who scored the marks listed below.

a) C	64 Calculate t	58 he meai	75 n mark	82	75	82	74	40	59	82	64 (4 mai	96 :ks)
b) S	tate the n	node and	d its typ	e							(3 mai	rks)
c) C	Compute tl	he medi	an								(3 mai	rks)
d) C	Calculate t	he varia	ınce								(7 mai	ks)
e) S	tate any 2	advant	ages of	the mea	an						(4 ma	rks)
f) G	ive 2 disa	dvantag	ges of th	e media	an					-	(4 ma	rks)
										[Total	25 mar	ks]

Question 5

Distinguish between the following scales of measurement

a) Nominal scale and Ratio scale (4 marks)

b) Ten educational research students at a certain institution wrote a class test, one in Measurement and Testing, and the other in Research Methods where they obtained the scores shown in table 1.

Table 1:

Measurement and Testing and Research Methods scores

Student	A	В	C	D	E	F	G	H	I	J
Measurement	80	74	56	53	78	90	73	65	40	75
& Testing										
Research	40	52	75	74	50	54	59	60	71	48
Methods							-			

Using information in Table 1 above, determine the relationship between the students' performance in Educational Psychology and Research Methods using the appropriate measure of association. You should also comment on the outcome or measure of association found. (21 marks)

[Total 25 marks]

Question 6

A lecturer claimed that the students' performance in Educational Psychology is significantly different from their performance in Educational Management. Using the data on Table 2 below, including the relevant hypothesis testing procedure, establish at 5% significance level if the lecturer's claim that there is a significant difference between the two courses is justified.

[Total 25 marks]

Table 2: Educational Management and Educational Psychology scores

STUDENT	A	В	C	D	E	F	G	H	I	J
Educational	74	82	70	91	54	69	84	81	75	67
Management	-				Ì					
Educational	70	64	68	92	53	69	82	82	72	70
Psychology									<u> </u>	

TABLE II Chiral Values of the Student t-test

ببستوسي فتعتبي	ماران الماران الماران الماران الماران المارا	<u> </u>			<u>. 19. January and John State</u>	
	Leve	of signific	once for a	وعجوب وكانته والمستعدد	, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,	1
	.,10	,05	,025	Ü).	(705	,0003
	Leve	of significa	nce for a no	m-directiona	L Liwo-tailed	j test
The state of	.20	.10	N5	d)2	,01	.001
2	1.886 1.886	6.314 2.920 2.353	12,706 4,303 3,182	31,821 6,965 4,541	63 657 9 925 9 841	636,619 31,598 12,941
5	1,533	2.332	2.776	3.747	4.604	8,610
	1,476	2.015	2.571	3.365	4.052	6.859
-6	1,440	1,943	2.447	3:143	3.707	5,959
77	1,415	1,895	2.365	2:998	3.499	5,405
8	1,397	1,860	2.306	2:896	3.355	5,041
9	1,383	1,833	2.262	2:821	3.230	1,781
10	1,372	1,812	2.228	2:764	3.169	4,587
	i 363	1.796	2.201	2.718	3.106	4.437
	1356	1.782	2.179	2.681	3.055	4.318
	1350	1.771	2.160	2.650	3.012	4.221
	1345	1.761	2.145	2.624	2.977	4.140
	1341	1.753	2.131	2.602	2.947	4.073
16	1,337	1.746	2,120	2.587	2.921	4.015
17	1,338	1.740	2,110	2.567	2.898	3.965
18	1,330	1.734	2,191	2.582	2.878	3.922
19	1,328	1.729	2,093	2.539	2.861	3.883
20	1,325	1.725	2,086	2.528	2.861	3.850
21	1.323	1.721	2.080	2.518	2.831	3.819
12	1.321	1.717	2.074	2.508	2.819	3.792
23	1.319	1.714	2.069	2.500	2.807	3.767
24	1.318	1.711	2.064	2.492	2.797	3.745
25	1.316	1.708	2.060	2.485	2.787	3.725
26	1.315	1.706	2.056	2,479	2,779	3.707
27	1.314	1.703	2.052	2,473	2,771	3.690
18	1.315	1.701	2.048	2,467	2,763	3.674
29	1.311	1.699	2.045	2,462	2,756	3.659
30	1.310	1.697	2.042	2,457	2,750	3.646
40	1,303	1.684	2.021	2.423	2.704	3.551
60	1,296	1.631	2.000	2.390	2.660	3.460
120	1,289	1.658	1.980	2.358	2.617	3.373
2	1,282	1.645	1.960	2.326	2.576	3.291

Find the row corresponding to the indicated degrees of freedom, find the column corresponding to the chosen level of significance, taking into account the type of H_1 (directional or non-directional). The critical value $t_{\rm col}$ is at the intersection of that row and that column, if $t_{\rm loc} > t_{\rm col}$, then H_2 is rejected.

FACULTY OF EDUCATION

DEPARTMENT OF EDUCATIONAL FOUNDATIONS AND MANAGEMENT

STATISTICAL FORMULAE

Sample Variance:
$$S^2 = \frac{\sum (x-\overline{x})^2}{n-1}$$

$$S^2 = \frac{\sum (x - \overline{x})^2}{n - 1}$$

Sample Standard Deviation:

$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$$

Pearson product moment correlation coefficient:

$$r_{xy} = \frac{n\sum xy - \sum x\sum y}{\sqrt{[n\sum x^2 - (\sum x)^2][n\sum y^2 - (\sum y)^2]}}$$

Spearman's rank order correlation coefficient:

$$rho = 1 - \frac{6\sum d^2}{n(n^2 - 1)}$$

Chi-squared Test Statistic:

$$x^2 = \sum \frac{(0-E)^2}{E}$$

Z-score:

$$z = \frac{x - \overline{x}}{s}$$

$$z = \frac{u-\mu}{\sigma}$$

Standardisation: $z = \frac{u-\mu}{\sigma}$ Where Z ~N(0,1)

T-score:

$$T=50+10\,(\frac{x-\overline{x}}{s})$$

Student t-test:
$$t = \frac{\sqrt{(n-1)} \sum d}{\sqrt{n \sum d^2 - (\sum d)^2}}$$

ANALYSIS OF VARIANCE (ANOVA) FORMULAE

1.
$$SS \text{ (TOTAL)} = \sum x^2 - \frac{(\sum x)^2}{n}$$

2.
$$SST = SS(Treatment) = SS(BtwnGrps) = \sum_{n=1}^{\infty} \frac{T_i^2}{n_i} - \frac{(\sum x)^2}{n} = \frac{T_1^2}{n_1} + \frac{r_2^2}{n_2} + \dots + \frac{T_p^2}{n_p} - \frac{(\sum x)^2}{n}$$

3.
$$SSE = SS (TOTAL) - SST$$

(N.B. $SSE = SS (Error) = SS (Within Groups) = SS (Residual)$)

$$4. \quad MST = \frac{SST}{p-1}$$

5.
$$MSE = \frac{SSE}{n-p}$$

6.
$$F_{calc} = \frac{MST}{MSE}$$

ONE-WAY ANOVA TABLE

Source of variation	Sum of squares	Degrees of Freedom (df)	Mean Square	F _{calc}
Between Groups (Treatments)	SST	p-1	$MST = \frac{SST}{p-1}$	
Within Groups (Error or Residual)	SSE	п-р	$MSE = \frac{SSE}{n-p}$	$F_{calc} = \frac{MST}{MSE}$
Total	SS(TOTAL)	n-1		

n = total number of observations

p = number of treatments (number of samples or groups)

p-1 = numerator degrees of freedom

n-p = denominator degrees of freedom

 T_i = total for group i(i = 1, 2, 3, ..., p)

 n_i = number of observations in group i(i = 1, 2, 3, ..., p)