#### UNIVERSITY OF ESWATINI

# **RE-SIT EXAMINATION PAPER**

Semeter 2 2021

1

TITLE OF PAPER: Curriculum Studies in Physics II

Course Code:

**CTE334** 

Time allowed:

Three Hours

# **INSTRUCTIONS:**

- 1. This paper contains five questions.
- 2. Answer ANY FOUR questions. Each question carries 25 marks.
- 3. Any piece of material not intended for marking purposes should be clearly CROSSED OUT.
- 4. Each question must be answered on a fresh page and numbered fully.
- 5. Graph paper is provided.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR



The diagram shows Approaches to Learning (ATL), a model that compares to Bloom's Taxonomy.

- a. For each skill (Communication, Social, Self-management, Thinking, Research),
   outline activities you plan to achieve in one school term [5x2]
- b. Briefly compare and contrast the ATL model and Blooms Cognitive objectives
   which are mainly used to develop subject curricula. [15]

[25 marks]

# Question 2

You teach the topic 'What is Science' to a Form One class. Design five activities that a class of 20 can rotate in groups in a double period of 80 minutes. The activities should be such that the end they can show that:

| a. | Human sense of taste is not reliable             | [5] |
|----|--------------------------------------------------|-----|
| b. | Measurements must be repeated to reduce errors   | [5] |
| c. | Science has limitations                          | [5] |
| d. | Scientific knowledge is tentative                | [5] |
| e  | Indices and logarithms are essential in Physics. | [5] |

### Question 3

For a class of 70 learners, a teacher photocopied diagrams of electrical meters measuring the current through a wire kept at a constant temperature and the potential difference across the wire. The diameter of the wire is  $46\mu m$  and length 53.3cm



ii. Draw an appropriate graph and determine the resistivity of the wire, given that

$$V = IR ag{8}$$

iii. Determine the resistivity  $\rho$  of tungsten given that  $R = \frac{\rho l}{A}$  [5]

[25 marks]

### Question 4

Sample situations from the practices of Teacher A and Teacher B are outlined in the following table:

| Situation                                                              | Teacher A                                                                              | Teacher B                                                                    |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 1. Using Form 1<br>textbook, 'Water, water<br>everywhere.'             | Pupils read paragraphs aloud, in turn.                                                 | Pupils discuss water conservation ideas, water bill reading and costing.     |
| 2. Pupil asks, "sir, does<br>water in a dam boil<br>before evaporation | ?" 'Eh eh, heat from the sun<br>and moon causes evaporation<br>to happen at all times' | 'Evaporation takes place at<br>all temperatures at all times<br>of the day.' |
| 3. Perfume sprayed in one corner of the classroom                      | 'Soon, you will see the effect of diffusion of the smell.'                             | 'In what ways does perfume<br>travel to our noses?'                          |
| 4. Is Pluto a planet in the solar system?                              | 'Yes, Pluto is the farthest planet; it is very small.'                                 | According to new developments, let's find out on the internet.               |

a. For each situation, make a critical comparison of the practices of teachers A and B.

[20]

b. How would you have tackled such a lesson in your Form 1 class?

[5]

[25 marks]

#### **Question 5**

Explain the following situations of Newton's Second law to Secondary school students debating different conditions of the law.

a. constant mass, variable velocity as in a bullet shot from a gun, constant mass but experiences friction with the matter.

b. Constant velocity, variable mass as in a hovering helicopter [5]

c. Variable mass and variable velocity as in a rocket thrust [5]

d. Explain to a class, how to calculate the work done by a variable force as shown in the graph below.



area = work done by F

[5]

e. How could you demonstrate work done using the following equipment?

Force meter, 50-gram mass, chalk, chalkboard, stand and clamp.

[5]

END