UNIVERSITY OF SWAZILAND FACULTY OF EDUCATION RE-SIT EXAMINATION PAPER 2019

TITLE OF PAPER:

CURRICULUM STUDIES IN MATHEMATICS II

COURSE CODE:

CTE332/CTE532

PROGRAMME:

B.ED 3/PGCE

TIME ALLOWED:

THREE (3) HOURS

INSTRUCTIONS:

ANSWER ANY FOUR QUESTIONS. EACH QUESTION IS

WORTH 25 MARKS.

This paper contains 6 pages including this one

DO NOT OPEN THIS PAPER UNTIL INSTRUCTED TO DO SO BY THE INVIGILATOR

Question 1 (a) Orton (2004) states some language difficulties in the teaching and learning of school [10] mathematics. Discuss five of these difficulties giving an example in each case. (b) Some people have suggested code-switching in the teaching and learning of school mathematics. Discuss the advantages and disadvantages of this to the learning of mathematics [15] **Question 2** (a) Explain in your own words each of the following phrases in relationship to national examinations: [5] Learner unreliability (i) [5] Administrative unreliability (ii) (b) You have to refer to appendix 1(a) and (b) for this part of the question Critique the marking scheme (appendix 1 (b)) prepared by a student teacher for Item1 (i) [5] (appendix 1(a)) [10] Write an appropriate marking guide for the question (ii) **Question 3** (a) A student teacher gave Item 2, a multiple choice item (appendix 2) in a test. Analyse the item and say with support why it is a good or a bad item. [5] (b) Objective testing skills can be used to break down a conventional examination question into objective test items for diagnostic purposes. Break down Item 3, an examination question in [20] appendix 3, into completion type objective test items. **Question 4** [10] (a) What factors influence the choice of a leadership style (b) How would you use any three of the leadership styles you learnt in this course to head the [15] Mathematics department at a typical government school **Question 5** Write an essay on the value of curriculum integration to the learning of school mathematics. [25]

Appendix 1(a)

_	
Item	1

(a) 3 6 19 20 24 27 30 32 35 36 48 49 51

From this list of numbers write down

(i) a factor of 15,

.....[1]

(ii) a multiple of 18,

.....[1]

(iii) an odd square number,

.....[1]

(iv) a cube number.

.....[1]

(b) Write as a percentage.

(i) 0.43

.....% [2]

(ii) $\frac{2}{5}$,

.....% [2]

(c) Write	$\frac{28}{42}$ in its lowest terms.	
		[2]
(i) Write 45	as a product of its prime factors.	
		[2]
(ii) Find the	nighest common factor (HCF) of 45 and 105.	
	5	
	•	
		[2]
		[2]
Appendix 1 (b Item 1 markir (a) (i) 3 A ₁) g Guide	
(ii) 36 A ₁		
(iii) 49 A ₁ (iv) 27 A ₁		
(b) (i) 43% A ₂ (ii) 40% A ₂	t.	
(c) $\frac{2}{3}$ A ₂		
(d) (i) $3^2 \times 5 A$ (ii) $15 A_2$	2	

Appendix 2 Item 2 Expand $(x-2y)^2$. Circle the correct answer.

$$A x^2 - 2xy - 2y(x - 2y)$$

$$B x^2 - 2xy - 2yx^4 - 4y^2$$

$$C x^2 - 4xy + 4y^2$$

$$D x^2 - 2xy - 2yx + 4y^2$$

Appendix 3

Item 3

A field shaped like a trapezium is shown below.

BD is perpendicular to EC and has length (y + 10) metres.

It is given that AB = (2x + 20) metres and EC = (4x + 10) metres.

- (a) Show that the area of the field is $3x^2 + 45x + 150$.
- (b) Given that the area of the field is 1800 m²
 - (i) form an equation for the area of the field and show that it reduces to

$$\chi^2 + 15y - 550 = 0,$$

- (ii) solve the equation $x^2 + 15x = 550 = 0$, giving your answer to two decimal places,
- (iii) find the length of EC.