59 ### UNIVERSITY OF SWAZILAND ## **FACULTY OF EDUCATION** # DEPARTMENT OF EDUCATIONAL FOUNDATIONS AND MANAGEMENT ### FOR #### INSTITUTE OF POST GRADUATE STUDIES ## NOVEMBER, 2017 FINAL EXAMINATION PAPER ## MASTER OF EDUCATION (M.Ed) COURSE CODE EFM 601/EDF 650 TITLE OF PAPER RESEARCH DESIGN AND TECHNIQUES TIME ALLOWED : THREE HOURS INSTRUCTIONS : 1. THIS PAPER IS DIVIDED INTO TWO SECTIONS (A AND B). ANSWER ANY TWO QUESTIONS FROM EACH SECTION 2. UTILISE THE ATTACHED STATISTICAL FORMULAS AND TABLES WHERE NECESSARY. TOTAL MARKS : 100 THIS PAPER IS NOT TO BE OPENED UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE INVIGILATOR. #### SECTION A 1. Discuss the significance of literature review in a research. Total: 25 Marks. 2. Examine the assertion that the qualitative research paradigm is more applicable to educational research than the quantitative paradigm. Total: 25 Marks. 3. Evaluate the claim that a research proposal is an indispensable element in educational research. **Total: 25 Marks.** #### SECTION B 4. Table 1 below shows 12 pairs of marks from 12 students who sat for two tests X and Y. Table 1 showing marks obtained by 12 students in test X and test Y | student | A | В | С | D | Е | F | G | Н | I | J | K | L | |---------|----|----|----|----|----|----|----|----|----|----|----|----| | Test X | 7 | 8 | 10 | 9 | 12 | 14 | 16 | 11 | 12 | 15 | 13 | 16 | | Test Y | 16 | 17 | 19 | 21 | 20 | 22 | 23 | 18 | 24 | 25 | 21 | 25 | a) Using the appropriate formula calculate the correlation coefficient for the two pairs of scores and comment on it. (20 marks) b) Calculate the mean of test X (2 marks) c) Calculate the median of test Y (2 marks) d) State the mode of test X (1 mark) [Total 25 marks] 5. The table below shows marks obtained by 10 students in Science and Mathematics Table 2 showing results obtained in Science and Mathematics | Student | A | В | С | D | Е | F | G | Н | I | J | |---------|----|----|----|----|------|----|----|----|----|----| | Science | 90 | 80 | 20 | 60 | 85 - | 20 | 50 | 45 | 55 | 65 | | Maths | 80 | 70 | 30 | 50 | 70 | 20 | 40 | 40 | 50 | 80 | a). Draw a scatter plot and comment on it. (5 marks) b). Calculate the standard deviations for Science and Maths. (20 marks) [Total: 25 marks] 6. Ten Form 4 pupils at a certain school wrote two tests; one in Geography and the other one in History. Table 3 below shows the results Table 3 showing results of 10 pupils in Geography and History | Pupil | Geography | History | |-------|-----------|---------| | A | 80 | 40 | | В | 74 | 52 | | С | 56 | 75 | | D | 52 | 74 | | Е | 78 | 50 | | F | 90 | 54 | | G | 73 | 59 | | Н | 65 | 60 | | I | 40 | 71 | | J | 75 | 48 | Carry out a t- test at 1% significance level to determine if there is a difference between the Form 4 pupils' academic performance in Geography and History and comment on the obtained t. [25 marks] ### **FACULTY OF EDUCATION** ## DEPARTMENT OF EDUCATIONAL FOUNDATIONS AND MANAGEMENT # STATISTICAL FORMULAE Sample Variance: $$S^2 = \frac{\sum (x - \overline{x})^2}{n - 1}$$ $$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$$ ## Product moment correlation coefficient: $$r_{xy} = \frac{n\sum xy - \sum x\sum y}{\sqrt{[n\sum x^2 - (\sum x)^2][n\sum y^2 - (\sum y)^2]}}$$ $$rho = 1 - \frac{6\sum d^2}{n(n^2 - 1)}$$ Chi-squared Test Statistic: $$x^2 = \sum_{F} \frac{(0-E)^2}{F}$$ $$x^2 = \sum \frac{(0-E)^2}{F}$$ $$z=\frac{x-\overline{x}}{c}$$ $$z = \frac{u-\mu}{\sigma}$$ Standardisation: $$z = \frac{u-\mu}{\sigma}$$ Where Z ~N(0,1) T-score: $$T = 50 + 10 \left(\frac{x - \overline{x}}{s}\right)$$ $$t = \frac{\sqrt{(n-1)} \sum d}{\sqrt{n \sum d^2 - (\sum d)^2}}$$ # ANALYSIS OF VARIANCE (ANOVA) FORMULAE 1. $$SS \text{ (TOTAL)} = \sum x^2 - \frac{(\sum x)^2}{n}$$ 2. $$SST = SS(Treatment) = SS(Btwn Grps) = \sum_{i=1}^{\infty} \frac{T_i^2}{n_i} - \frac{(\sum x)^2}{n} = \frac{T_1^2}{n_1} + \frac{T_2^2}{n_2} + \dots + \frac{T_p^2}{n_p} - \frac{(\sum x)^2}{n}$$ The second second 3. $$SSE = SS (TOTAL) - SST$$ $$4. \quad MST = \frac{SST}{p-1}$$ 5. $$MSE = \frac{SSE}{n-p}$$ 6. $$F_{calc} = \frac{MST}{MSE}$$ ## **ONE-WAY ANOVA TABLE** | Source of variation | Sum of squares | Degrees of
Freedom (df) | Mean Square | F _{calc} | |---|----------------|----------------------------|-------------------------|------------------------------| | Between Groups (Treatments) | SST | p-1 | $MST = \frac{SST}{p-1}$ | | | Within Groups
(Error or
Residual) | SSE | п-р | $MSE = \frac{SSE}{n-p}$ | $F_{calc} = \frac{MST}{MSE}$ | | Total | SS(TOTAL) | n-1 | | | n = total number of observations p = number of treatments (number of samples or groups) p-1 = numerator degrees of freedom n-p = denominator degrees of freedom T_i = total for group i(i = 1, 2, 3, ..., p) n_i = number of observations in group i(i = 1, 2, 3, ..., p) TABLE II Critical Values of t: Student t-test | | | Level of significance for a directional (one-tailed) test | | | | | | | | | |----------|----------------------------|---|---|--|--|--|---|--|--|--| | | | .10 | ,05 | ,025 | ,01 | ,005 | ,0005 | | | | | ð | | Level of significance for a non-directional (two-tailed) test | | | | | | | | | | . | df | .20 | •10 | เดุร | , 02 | . 01 | (001 | | | | | : | 1
2
3
4
5 | 3.078
1.886
1.638
1.533
1.476 | 6.314
2.920
2.353
2.132
2.015 | 12.706
4.303
3.182
2.776
2.571 | 31.821
6.965
4.541
3.747
3.365 | 63.657
9.925
5.841
4.604
4.032 | 636.619
31.598
12.941
8.610
6.859 | | | | | | 6
7
8
9 | 1.440
1.415
1.397
1.383
1.372 | 1.943
1.895
1.860
1.833
1.812 | 2.447
2.365
2.306
2.262
2.228 | 3.143
2.998
2.896
2.821
2.764 | 3.707
3.499
3.355
3.250
3.169 | 5.959
5.405
5.041
4.781
4.587 | | | | | | 11
12
13
14
15 | 1.363
1.356
1.350
1.345
1.341 | 1.796
1.782
1.771
1.761
1.753 | 2.201
2.179
2.160
2.145
2.131 | 2.718
2.681
2.650
2.624
2.602 | 3.106
3.055
3.012
2.977
2.947 | 4.437
4.318
4.221
4.140
4.073 | | | | | | 16
17
18
19
20 | 1.337
1.333
1.330
1.328
1.325 | 1.746
1.740
1.734
1.729
1.725 | 2,120
2.110
2.101
2.093
2.086 | 2.583
2.567
2.552
2.539
2.528 | 2.898
2.878
2.861
2.845 | 4.015
3.965
3.922
3.883
3.850 | | | | | | 21
22
23
24
25 | 1.323
1.321
1.319
1.318
1.316 | 1.721
1.717
1.714
1.711
1.708 | 2.080
2.074
2.069
2.064
2.060 | 2.518
2.508
2.500
2.492
2.485 | 2.831
2.819
2.807
2.797
2.787 | 3.819
3.792
3.767
3.745
3.725 | | | | | | 26
27
28
29
30 | 1.315
1.314
1.313
1.311
1.310 | 1.706
1.703
1.701
1.699
1.697 | 2.056
2.052
2.048
2.045
2.042 | 2.479
2.473
2.467
2.462
2.457 | 2.779
2.771
2.763
2.756
2.750 | 3.707
3.690
3.674
3.659
3.646 | | | | | | 40
60
120
∞ | 1.303
1.296
1.289
1.282 | 1.684
1.671
1.658
1.645 | 2.021
2.000
1.980
1.960 | 2.423
2.390
2.358
2.326 | 2.704
2.660
2.617
2.576 | 3.551
3.460
3.373
3.291 | | | | Find the row corresponding to the indicated degrees of freedom, find the column corresponding to the chosen level of significance, taking into account the type of H_i (directional or non-directional). The critical value $t_{\rm crit}$ is at the intersection of that row and that column. If $t_{\rm crit} \geq t_{\rm crit}$ then H_o is rejected.