59

UNIVERSITY OF SWAZILAND

FACULTY OF EDUCATION

DEPARTMENT OF EDUCATIONAL FOUNDATIONS AND MANAGEMENT

FOR

INSTITUTE OF POST GRADUATE STUDIES

NOVEMBER, 2017 FINAL EXAMINATION PAPER

MASTER OF EDUCATION (M.Ed)

COURSE CODE

EFM 601/EDF 650

TITLE OF PAPER

RESEARCH DESIGN AND TECHNIQUES

TIME ALLOWED :

THREE HOURS

INSTRUCTIONS :

1. THIS PAPER IS DIVIDED INTO TWO

SECTIONS (A AND B). ANSWER ANY TWO

QUESTIONS FROM EACH SECTION

2. UTILISE THE ATTACHED STATISTICAL

FORMULAS AND TABLES WHERE

NECESSARY.

TOTAL MARKS :

100

THIS PAPER IS NOT TO BE OPENED UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE INVIGILATOR.

SECTION A

1. Discuss the significance of literature review in a research.

Total: 25 Marks.

2. Examine the assertion that the qualitative research paradigm is more applicable to educational research than the quantitative paradigm.

Total: 25 Marks.

3. Evaluate the claim that a research proposal is an indispensable element in educational research.

Total: 25 Marks.

SECTION B

4. Table 1 below shows 12 pairs of marks from 12 students who sat for two tests X and Y.

Table 1 showing marks obtained by 12 students in test X and test Y

student	A	В	С	D	Е	F	G	Н	I	J	K	L
Test X	7	8	10	9	12	14	16	11	12	15	13	16
Test Y	16	17	19	21	20	22	23	18	24	25	21	25

a) Using the appropriate formula calculate the correlation coefficient for the two pairs of

scores and comment on it.

(20 marks)

b) Calculate the mean of test X

(2 marks)

c) Calculate the median of test Y

(2 marks)

d) State the mode of test X

(1 mark)

[Total 25 marks]

5. The table below shows marks obtained by 10 students in Science and Mathematics

Table 2 showing results obtained in Science and Mathematics

Student	A	В	С	D	Е	F	G	Н	I	J
Science	90	80	20	60	85 -	20	50	45	55	65
Maths	80	70	30	50	70	20	40	40	50	80

a). Draw a scatter plot and comment on it.

(5 marks)

b). Calculate the standard deviations for Science and Maths.

(20 marks)

[Total: 25 marks]

6. Ten Form 4 pupils at a certain school wrote two tests; one in Geography and the other one in History. Table 3 below shows the results

Table 3 showing results of 10 pupils in Geography and History

Pupil	Geography	History
A	80	40
В	74	52
С	56	75
D	52	74
Е	78	50
F	90	54
G	73	59
Н	65	60
I	40	71
J	75	48

Carry out a t- test at 1% significance level to determine if there is a difference between the Form 4 pupils' academic performance in Geography and History and comment on the obtained t.

[25 marks]

FACULTY OF EDUCATION

DEPARTMENT OF EDUCATIONAL FOUNDATIONS AND MANAGEMENT

STATISTICAL FORMULAE

Sample Variance:
$$S^2 = \frac{\sum (x - \overline{x})^2}{n - 1}$$

$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$$

Product moment correlation coefficient:

$$r_{xy} = \frac{n\sum xy - \sum x\sum y}{\sqrt{[n\sum x^2 - (\sum x)^2][n\sum y^2 - (\sum y)^2]}}$$

$$rho = 1 - \frac{6\sum d^2}{n(n^2 - 1)}$$

Chi-squared Test Statistic:
$$x^2 = \sum_{F} \frac{(0-E)^2}{F}$$

$$x^2 = \sum \frac{(0-E)^2}{F}$$

$$z=\frac{x-\overline{x}}{c}$$

$$z = \frac{u-\mu}{\sigma}$$

Standardisation:
$$z = \frac{u-\mu}{\sigma}$$
 Where Z ~N(0,1)

T-score:
$$T = 50 + 10 \left(\frac{x - \overline{x}}{s}\right)$$

$$t = \frac{\sqrt{(n-1)} \sum d}{\sqrt{n \sum d^2 - (\sum d)^2}}$$

ANALYSIS OF VARIANCE (ANOVA) FORMULAE

1.
$$SS \text{ (TOTAL)} = \sum x^2 - \frac{(\sum x)^2}{n}$$

2.
$$SST = SS(Treatment) = SS(Btwn Grps) = \sum_{i=1}^{\infty} \frac{T_i^2}{n_i} - \frac{(\sum x)^2}{n} = \frac{T_1^2}{n_1} + \frac{T_2^2}{n_2} + \dots + \frac{T_p^2}{n_p} - \frac{(\sum x)^2}{n}$$

The second second

3.
$$SSE = SS (TOTAL) - SST$$

$$4. \quad MST = \frac{SST}{p-1}$$

5.
$$MSE = \frac{SSE}{n-p}$$

6.
$$F_{calc} = \frac{MST}{MSE}$$

ONE-WAY ANOVA TABLE

Source of variation	Sum of squares	Degrees of Freedom (df)	Mean Square	F _{calc}
Between Groups (Treatments)	SST	p-1	$MST = \frac{SST}{p-1}$	
Within Groups (Error or Residual)	SSE	п-р	$MSE = \frac{SSE}{n-p}$	$F_{calc} = \frac{MST}{MSE}$
Total	SS(TOTAL)	n-1		

n = total number of observations

p = number of treatments (number of samples or groups)

p-1 = numerator degrees of freedom

n-p = denominator degrees of freedom

 T_i = total for group i(i = 1, 2, 3, ..., p)

 n_i = number of observations in group i(i = 1, 2, 3, ..., p)

TABLE II Critical Values of t: Student t-test

		Level of significance for a directional (one-tailed) test								
		.10	,05	,025	,01	,005	,0005			
ð		Level of significance for a non-directional (two-tailed) test								
.	df	.20	•10	เดุร	, 02	. 01	(001			
:	1 2 3 4 5	3.078 1.886 1.638 1.533 1.476	6.314 2.920 2.353 2.132 2.015	12.706 4.303 3.182 2.776 2.571	31.821 6.965 4.541 3.747 3.365	63.657 9.925 5.841 4.604 4.032	636.619 31.598 12.941 8.610 6.859			
	6 7 8 9	1.440 1.415 1.397 1.383 1.372	1.943 1.895 1.860 1.833 1.812	2.447 2.365 2.306 2.262 2.228	3.143 2.998 2.896 2.821 2.764	3.707 3.499 3.355 3.250 3.169	5.959 5.405 5.041 4.781 4.587			
	11 12 13 14 15	1.363 1.356 1.350 1.345 1.341	1.796 1.782 1.771 1.761 1.753	2.201 2.179 2.160 2.145 2.131	2.718 2.681 2.650 2.624 2.602	3.106 3.055 3.012 2.977 2.947	4.437 4.318 4.221 4.140 4.073			
	16 17 18 19 20	1.337 1.333 1.330 1.328 1.325	1.746 1.740 1.734 1.729 1.725	2,120 2.110 2.101 2.093 2.086	2.583 2.567 2.552 2.539 2.528	2.898 2.878 2.861 2.845	4.015 3.965 3.922 3.883 3.850			
	21 22 23 24 25	1.323 1.321 1.319 1.318 1.316	1.721 1.717 1.714 1.711 1.708	2.080 2.074 2.069 2.064 2.060	2.518 2.508 2.500 2.492 2.485	2.831 2.819 2.807 2.797 2.787	3.819 3.792 3.767 3.745 3.725			
	26 27 28 29 30	1.315 1.314 1.313 1.311 1.310	1.706 1.703 1.701 1.699 1.697	2.056 2.052 2.048 2.045 2.042	2.479 2.473 2.467 2.462 2.457	2.779 2.771 2.763 2.756 2.750	3.707 3.690 3.674 3.659 3.646			
	40 60 120 ∞	1.303 1.296 1.289 1.282	1.684 1.671 1.658 1.645	2.021 2.000 1.980 1.960	2.423 2.390 2.358 2.326	2.704 2.660 2.617 2.576	3.551 3.460 3.373 3.291			

Find the row corresponding to the indicated degrees of freedom, find the column corresponding to the chosen level of significance, taking into account the type of H_i (directional or non-directional). The critical value $t_{\rm crit}$ is at the intersection of that row and that column. If $t_{\rm crit} \geq t_{\rm crit}$ then H_o is rejected.