UNIVERSITY OF SWAZILAND

FACULTY OF EDUCATION EXAMINATION PAPER 2009

B. Ed. III AND PGCE F/T

TITLE OF PAPER:

Curriculum Studies in Physics

COURSE NUMBER:

EDC 382

TIME ALLOWED Three (3) hours

INSTRUCTIONS

- 1. This paper contains FIVE questions
- 2. Question 1 is COMPULSORY. You may then choose ANY THREE questions from questions 2, 3, 4, 5
- 3. Each question is worth 25 marks
- 4. Any piece of material or work which is **not** intended for marking purposes should be clearly CROSSED OUT
- 5. Ensure that responses to questions are NUMBERED CORRECTLY

SPECIAL REQUIREMENTS

IGCSE Physical Science Syllabus (0652)

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR

Question 1 This question is compulsory and carries 40 marks.

A textbook explains electromagnetic induction using the equation $\varepsilon = -N\frac{d\varphi}{dt}$. Your non-math student fails to understand the meaning of this equation and asks that you practically demonstrate the meaning of this equation.

- a. Given a galvanometer, enameled copper wire and a bar magnet, draw annotated diagrams to show how you would **practically** demonstrate that:
 - i. induced emf is in a particular direction [4]
 ii. magnitude of induced emf depends on the rate of flux linkage [4]
 - iii. energy is conserved in electromagnetic induction [4]
 - iv. the number of turns influences emf [4]
- b. Explain to a Form 4 class how the following principles are applied in the triple beam balance:
- i. electromagnetic induction in the frictionless damping system
 ii. Principle of moments
 [4]

- c. Give a correct analysis and correction of the common textbook misconception that 'electricity flows like water in a hose pipe, from high to a low pressure point.' [6]
- d. Draw velocity-time graphs to summarise the vertical motion in the following kinematic situations:
 - i. Golf ball bounces three times on a hard surface with less height at each rebound

ii. A paratrooper jumps from a plane at 3000m above the ground and deploys his parachute after freely falling for 20 seconds. [5]

[5]

Question 2.

You students are confused about the meaning of certain paired concepts:

Pair 1:

heat and temperature

Pair 2:

thermal gradient and potential difference

Through discussions, you suspect that the source of the confusion is from notes given by their former teacher. Design a method you could use to help your students confront this misconception. [20]

Question 3.

You are made in charge of a physics club at your school. Your club receives a donation of old non-functional radios and televisions from a local electronics company. Design a program of activities for the physics club where they can use the 'electronics junk' to learn physics beyond the syllabus.

Question 4

Your rural school student says in class, 'Sir, physics is only possible in town schools where they have more gadgets. Here in the rural areas; we don't even have electricity, how can physics be useful to us?' Plan a program of activities to make Physics relevant for rural contexts. [20]

Question 5

You are teaching the topic 'What is Science' to a Form One class. Design four simple activities which the class can do in rotating groups such that at the end of a double period, they would be able to outline the characteristics and limitations of science as a human endeavour. [20]