UNIVERSITY OF SWAZILAND

FACULTY OF EDUCATION

MAIN EXAMINATION PAPER 2007

B. Ed. III AND PGCE F/T

TITLE OF PAPER

Curriculum studies in Physics II

COURSE NUMBER

EDC 382

TIME ALLOWED

Three (3) hours

INSTRUCTIONS

1. This paper contains five questions

2. Question 1 is COMPULSORY. You may then choose ANY THREE questions from questions

2,3, 4, 5

3. Each question is worth 25 marks

4. Any piece of material or work which is not intended for marking purposes should be clearly

CROSSED OUT

5. Ensure that responses to questions are

NUMBERED CORRECTLY

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BE GRANTED BY THE INVIGILATOR

Section A

Question 1 is compulsory.

QUESTION 1

Practical physics skills are developed gradually throughout all the levels of education. Use the following to design learning activities that help learners to value accuracy in experiments.

- a. Measurement of lengths using a micrometer screw gauge [5]
- b. Treatment of random errors in measurement of the period of a pendulum. [10]
- c. Use of a graph to calculate rate of change of a variable. [10]

Section B

Answer any three questions.

Question 2

Analyse the extent to which physics education can empower people in Swaziland to develop a higher standard of living. [25]

Question 3

Discuss the influence of assessment practices in Swaziland on the purposes of physics education. [25]

Question 4

Students often believe that physics in the real world and in school science are not related. Use the following real world contexts to demonstrate physics principles to secondary school pupils.

- a. Cooking is very quick in a pressure cooker
- b. Doors and windows in air conditioned rooms should be kept closed
- c. Water spray from a hose pipe in sunshine produces a rainbow
- d. Microwave heats food in but not the ceramic dish containing it
- e. Lightning flashes are seen several seconds before the sound of thunder. [25]

Question 5

Demonstrate that it is possible to teach good physics using a small budget and materials from the environment, without sophisticated laboratories and equipment. [25]