UNIVERSITY OF SWAZILAND FACULTY OF EDUCATION SUPPLEMENTARY EXAMINATION PAPER 2006 TITLE OF PAPER : CURRICULUM IN MATHEMATICS **COURSE CODE** : EDC 381 **STUDENTS** : B.ED III AND PGCE TIME ALLOWED : THREE (3) HOURS **INSTRUCTIONS** : ATTEMPT <u>FOUR</u> QUESTIONS EACH QUESTION IS WORTH 20 MKS . ADDITIONAL MATERIALS : APPENDIX 1 THIS PAPER CONTAINS SIX PAGES. DO NOT OPEN UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR. ### Answer four questions #### **Question 1** - a) Name five types of objective test items. [5] - b) State five considerations to be made when constructing items for two of the types of items in (a). [10] - c) Write, stating the type, one example of an objective test item. [3] - d) What is meant by facility/difficulty index for a test item? [2] #### Question 2 - a) Name six measuring instruments for general assessment excluding objective tests. [6] - b) State advantages and/or disadvantages of four of the above instruments. [14] #### Question 3 Appendix one is a copy of the IGCSE syllabus. - a) Given that your school does not write the national Junior Certificate examinations, use the syllabus to prepare a teaching syllabus for each of the junior secondary forms in your school such that there are no gaps in the teaching/learning. [15] - b) Write an introduction stating clearly how you would accommodate the core and extended nature of IGCSE in your teaching syllabus. [5] #### **Question 4** - a) State five points that best describe the nature of traditional mathematics. [5] - b) State five difficulties encountered in the introduction of modern mathematics. [5] - c) State the aims of the OEEC which led to the introduction of modern mathematics. [10] #### Question 5 - a) Name the three leadership styles you studied this year. [3] - b) State four traits that best describe each type of leadership in a). [12] - c) Which type of leadership would you prefer to be dominant in your head of department? Give reasons for your answer. [5] # **CURRICULUM CONTENT** Students may follow either the Core curriculum only or the Extended curriculum which involves both the Core and Supplement. Students aiming for grades A* to C should follow the Extended curriculum. As well as demonstrating skill in the following techniques, candidates will be expected to apply them in the solution of problems. | THEME OR TOPIC | CORE | SUPPLEMENT | |--|--|---| | | All students should be able to: | Extended curriculum students, who are aiming for Grades A* to C, should, in addition be able to: | | Number, set notation and language | identify and use natural numbers, integers
(positive, negative and zero), prime
numbers, square numbers, common factors
and common multiples, rational and | use language, notation and Venn
diagrams to describe sets and
represent relationships between
sets as follows: | | | irrational numbers (e.g. π , $\sqrt{2}$), real numbers; continue a given number sequence; recognise patterns in sequences and relationships between different sequences, generalise to simple algebraic statements (including expressions for the n th term) relating to such sequences | Definition of sets, e.g. A={x:x is a natural number} B={(x,y): y=mx+c} C={x:a ≤ x ≤ b} D={a,b,c} | | • | | Notation Number of elements in set A n(A) | | | | "is an element of" ∈ | | <i>1</i> | | "is not an element of" | | | | Complement of set A A' The empty set Ø | | | | Universal set | | | | A is a subset of B $A \subseteq B$ | | | | A is a proper subset of B $A \subset B$
A is not a subset of B $A \nsubseteq B$ | | | | A is not a proper subset of B $A \not\subset B$ | | | | Union of A and B $A \cup B$
Intersection of A and B $A \cap B$ | | Squares, square roots and cubes | calculate squares, square roots, cubes
and cube roots of numbers | intersection of A and B | | 3. Directed numbers | use directed numbers in practical
situations (e.g. temperature change, flood
levels) | | | Vulgar and decimal fractions and percentages | use the language and notation of simple vulgar and decimal fractions and percentages in appropriate contexts; recognise equivalence and convert between these forms. | | | 5. Ordering | order quantities by magnitude and
demonstrate familiarity with the symbols | | | 6. Standard form | =, +, >, <, ≥ , ≤
- use the standard form A x 10" where n is a
positive or negative integer, and 1 ≤ A < 10 | | | 7. The four rules | use the four rules for calculations with
whole numbers, decimal fractions and
vulgar (and mixed) fractions, including
correct ordering of operations and use of
brackets | | | 8. Estimation | - make estimates of numbers, quantities and lengths, give approximations to specified numbers of significant figures and decimal places and round off answers to reasonable accuracy in the context of a given problem | | | 9. Limits of accuracy | give appropriate upper and lower
bounds for data given to a specified
accuracy (e.g. measured lengths) | obtain appropriate upper and lower
bounds to solutions of simple problems (e.g.
the calculation of the perimeter or the area
of a rectangle) given data to a specified
accuracy | | THEME OR TOPIC | CORE | SUPPLEMENT | |--|--|--| | 10. Ratio, proportion, rate 11. Percentages | - demonstrate an understanding of the elementary ideas and notation of ratio, direct and inverse proportion and common measures of rate; divide a quantity in a given ratio; use scales in practical situations; calculate average speed - calculate a given percentage of a quantity; | - express direct and inverse variation in algebraic terms and use this form of expression to find unknown quantities; increase and decrease a quantity by a given ratio - carry out calculations involving reverse | | | express one quantity as a percentage of
another, calculate percentage increase or
decrease | percentages, e.g. finding the cost price
given the selling price and the percentage
profit | | 12. Use of an electronic
calculator
13. Measures | use an electronic calculator efficiently; apply appropriate checks of accuracy use current units of mass, length, area, volume and capacity in practical situations and express quantities in terms of larger or smaller units | | | 14. Time | calculate times in terms of the 24-hour and
12-hour clock; read clocks, dials and
timetables | | | 15. Money | - calculate using money and convert from
one currency to another | | | 16. Personal and household finance | use given data to solve problems on
personal and household finance involving
earnings, simple interest and compound
interest (knowledge of compound interest
formula is not required), discount, profit and
loss; extract data from tables and charts | | | 17. Graphs in practical situations | demonstrate familiarity with cartesian co-
ordinates in two dimensions, interpret and
use graphs in practical situations including
travel graphs and conversion graphs, draw
graphs from given data | apply the idea of rate of change to easy kinematics involving distance-time and speed-time graphs, acceleration and deceleration; calculate distance travelled as area under a linear speed-time graph | | 18. Graphs of functions | - construct tables of values for functions of the form $ax + b$, $\pm x^2 + ax + b$, a/x ($x + 0$) where a and b are integral constants; draw and interpret such graphs; find the gradient of a straight line graph; solve linear and quadratic equations approximately by graphical methods | - construct tables of values and draw graphs for functions of the form ax^n where a is a rational constant and $n = -2, -1, 0, 1, 2, 3$ and simple sums of not more than three of these and for functions of the form a^x where a is a positive integer, estimate gradients of curves by drawing tangents; solve associated equations approximately by graphical methods | | 19. Straight line graphs | - interpret and obtain the equation of a straight line graph in the form $y = mx + c$; determine the equation of a straight line parallel to a given line | - calculate the gradient of a straight line
from the co-ordinates of two points on it;
calculate the length and the co-ordinates of
the midpoint of a straight line segment from
the co-ordinates of its end points - construct and transform more complicated
formulae and equations | | 20. Algebraic representation and formulae | use letters to express generalised
numbers and express basic arithmetic
processes algebraically, substitute numbers
for words and letters in formulae; transform
simple formulae; construct simple
expressions and set up simple equations | | | 21. Algebraic manipulation | - manipulate directed numbers; use
brackets and extract common factors | - expand products of algebraic expressions; factorise where possible expressions of the form $ax + bx + kay + kby$, $a^2x^2 - b^2y^2$; $a^2 + 2ab + b^2$; $ax^2 + bx + c$; manipulate algebraic fractions, e.g. $\frac{x}{3} + \frac{x-4}{2}$, | | | | $\frac{2x}{3} - \frac{3(x-5)}{2}, \frac{3a}{4} \times \frac{5ab}{3}, \frac{3a}{4} - \frac{9a}{10}, \frac{1}{x-2} - \frac{2}{x-3}$ | factorise and simplify expressions such as $\frac{x^2 - 2x}{x^2 - 5x + 6}$ $$\frac{x^2 - 2x}{x^2 - 5x + 6}$$ | THEME OR TOPIC | CORE | SUPPLEMENT | |--|--|--| | 22. Functions | | - use function notation, e.g. $f(x) = 3x-5$, $f:x \mapsto 3x-5$ to describe simple functions, and the notation $f^1(x)$ to describe their inverses; form composite functions as defined by $gf(x) = g(f(x))$ | | 23. Indices | - use and interpret positive, negative and zero indices | - use and interpret fractional indices, e.g. solve 32 ^x = 2 | | 24. Solutions of equations and
inequalities | - solve simple linear equations in one
unknown; solve simultaneous linear
equations in two unknowns | solve quadratic equations by factorisation
and either by use of the formula or by
completing the square; solve simple linear
inequalities | | 25. Linear programming | | represent inequalities graphically and use
this representation in the solution of simple
linear programming problems (the
conventions of using broken lines for strict
inequalities and shading unwanted regions
will be expected) | | 26. Geometrical terms and relationships | use and interpret the geometrical terms:
point, line, parallel, bearing, right angle,
acute, obtuse and reflex angles,
perpendicular, similarity, congruence; use
and interpret vocabulary of triangles,
quadrilaterals, circles, polygons and simple
solid figures including nets | use the relationships between areas of
similar triangles, with corresponding results
for similar figures and extension to volumes
and surface areas of similar solids | | 27. Geometrical constructions | measure lines and angles; construct a
triangle given the three sides using ruler
and compasses only; construct other simple
geometrical figures from given data using
protractors and set squares as necessary;
construct angle bisectors and perpendicular | | | | bisectors using straight edges and
compasses only; read and make scale
drawings | | | 28. Symmetry | recognise rotational and line symmetry
(including order of rotational symmetry) in
two dimensions and properties of triangles,
quadrilaterals and circles directly related to
their symmetries | - recognise symmetry properties of the prism (including cylinder) and the pyramid (including cone); use the following symmetry properties of circles: (a) equal chords are equidistant from the | | | | centre (b) the perpendicular bisector of a chord passes through the centre (c) tangents from an external point are equal in length | | 29. Angle properties | - calculate unknown angles using the following geometrical properties: (a) angles at a point (b) angles on a straight line and intersecting straight lines | use in addition the following geometrical properties: (a) angle properties of irregular polygons (b) angle at the centre of a circle is twice the angle at the circumference | | | (c) angles formed within parallel lines (d) angle properties of triangles and quadrilaterals (e) angle properties of regular polygons (f) angle in a semi-circle (g) angle between tangent and radius of a | (c) angles in the same segment are equal (d) angles in opposite segments are supplementary; cyclic quadrilaterals | | 30. Locus | circle - use the following loci and the method of
intersecting loci for sets of points in two
dimensions: | | | | (a) which are at a given distance from a given point (b) which are at a given distance from a given straight line | | | 31. Mensuration | (c) which are equidistant from two given points (d) which are equidistant from two given intersecting straight lines | solve ambleme involving the emicret | | U I KINSI IJANI IJANI I U | carry out calculations involving the
perimeter and area of a rectangle and
triangle, the circumference and area of a
circle, the area of a parallelogram and a
trapezium, the volume of a cuboid, prism
and cylinder and the surface area of a
cuboid and a cylinder | solve problems involving the arc length
and sector area as fractions of the
circumference and area of a circle, the
surface area and volume of a sphere,
pyramid and cone (given formulae for the
sphere, pyramid and cone) | | THEME OR TOPIC | CORE | SUPPLEMENT | |-------------------------------|--|---| | 32. Trigonometry | - interpret and use three-figure bearings measured clockwise from the North (i.e. 000°-360°) - apply Pythagoras' theorem and the sine, cosine and tangent ratios for acute angles to the calculation of a side or of an angle of a right-angled triangle (angles will be quoted in, and answers required in, degrees and decimals to one decimal place) | - solve trigonometrical problems in two dimensions involving angles of elevation and depression, extend sine and cosine values to angles between 90° and 180°, solve problems using the sine and cosine rules for any triangle and the formula area of triangle = $\frac{1}{2}ab\sin C$, solve simple trigonometrical problems in three dimensions including angle between a line and a plane | | 33. Statistics | - collect, classify and tabulate statistical data; read, interpret and draw simple inferences from tables and statistical diagrams; construct and use bar charts, ple charts, pictograms, simple frequency distributions, histograms with equal intervals and scatter diagrams (Including drawing a line of best fit by eye); understand what is meant by positive, negative and zero correlation; calculate the mean, median and mode for individual and discrete data and distinguish between the purposes for which | - construct and read histograms with equal and unequal intervals (areas proportional to frequencies and vertical axis labelled 'frequency density'); construct and use cumulative frequency diagrams; estimate and interpret the median, percentiles, quartiles and inter-quartile range; calculate an estimate of the mean for grouped and continuous data; identify the modal class from a grouped frequency distribution | | 34. Probability | they are used; calculate the range - calculate the probability of a single event as either a fraction or a decimal (not a ratio); understand and use the probability scale from 0 to 1; understand that: the probability of an event occurring = 1 - the probability of the event not occurring; understand probability in practice, e.g. relative frequency | calculate the probability of simple
combined events, using possibility diagrams
and tree diagrams where appropriate (in
possibility diagrams outcomes will be
represented by points on a grid and in tree
diagrams outcomes will be written at the
end of branches and probabilities by the
side of the branches) | | 35. Vectors in two dimensions | - describe a translation by using a vector represented by $\begin{pmatrix} x \\ y \end{pmatrix}$ \overrightarrow{AB} or \mathbf{a} ; add and | - calculate the magnitude of a vector $\begin{pmatrix} x \\ y \end{pmatrix}$ | | | subtract vectors; multiply a vector by a scalar | as $\sqrt{x^2 + y^2}$. (Vectors will be printed as | | | | AB or a and their magnitudes denoted by modulus signs, e.g. I AB I or I a I. In their answers to questions candidates are expected to indicate a in some definite way, | | | | e.g. by an arrow or by underlining, thus \overrightarrow{AB} or \underline{a}) - represent vectors by directed line segments; use the sum and difference of two vectors to express given vectors in terms of two coplanar vectors; use position | | 36. Matrices | | vectors - display information in the form of a matrix of any order; calculate the sum and product (where appropriate) of two matrices; calculate the product of a matrix and a scalar quantity; use the algebra of 2 x 2 matrices including the zero and identity 2 x 2 matrices; calculate the determinant and inverse A ⁻¹ of a non-singular matrix A | | 37. Transformations | reflect simple plane figures in horizontal or
vertical lines; rotate simple plane figures
about the origin, vertices or mid points of
edges of the figures, through multiples of
90°; construct given translations and
enlargements of simple plane figures;
recognise and describe reflections,
rotations, translations and enlargements | - use the following transformations of the plane: reflection (M); rotation (R); translation (T); enlargement (E); shear (H); stretching (S) and their combinations (if $M(a) = b$ and $R(b) = c$ the notation $RM(a) = c$ will be used; invariants under these transformations may be assumed.) - identify and give precise descriptions of transformations connecting given figures; describe transformations using co-ordinates and matrices (singular matrices are excluded) |