UNIVERSITY OF SWAZILAND FACULTY OF EDUCATION # **FINAL EXAMINATION PAPER 2006** TITLE OF PAPER : CURRICULUM IN MATHEMATICS **COURSE CODE** : EDC 281 **STUDENTS** : B.ED II AND PGCE TIME ALLOWED : THREE (3) HOURS INSTRUCTIONS : ANSWER FOUR QUESTIONS **EACH QUESTION IS WORTH 20 MKS** ADDITIONAL MATERIALS : APPENDIX 1, 2 and 3 **IGCSE SYLLABUS AND BOOK 4** THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR. THIS PAPER HAS THREE PAGES ### Answer four questions #### **Question 1** Give an explanation of each of the following learning theories: - a) Behaviourism [5] - b) Situated Learning [5] - c) Social Constructivism [5] - d) Vygotsky's Constructionism [5] ## Question 2 Prepare an investigation which you could use to teach each of the following circle angle properties (you need appendix 1 and book 4): - a) The angle between the radius of a circle and the tangent at the point of contact is a right angle. [5] - b) The angle at the centre of a circle is twice the angle at the circumference. [5] - c) Angles in the same segment are equal. [5] - d) Opposite angles in a cyclic quadrilateral are supplementary. [5] #### **Question 3** Mr. Dlamini noted the following answers from several pupils in his form three end of year examination. | Question | Wrong answer Given | |---|---------------------------------| | 1. Round off 12 499 to the nearest thousand | 13 000 | | 2. Work out 0.1 X 0.1 | 0.1 | | 3. Find an equivalent fraction for 3.236 | There is no equivalent fraction | | $4. (a+b)^2$ | $a^2 + b^2$ | - a) Identify the misconceptions displayed by the pupils' answers. [5] - b) Identify possible sources of the misconceptions. [5] - c) Choose **two** of the misconceptions from the above and devise a method you would use to correct each of them. [10] ## Question 4 Appendix 2 and 3 are copies from Miss Shabangu's scheme and daily preparation books respectively. - a) Read through the scheme and write out a list of errors and omissions she has made. [5] - b) Complete a similar list for the lesson plan. [5] - c) Write your own lesson presentation for this lesson starting from an introduction. [10] #### **Question 5** - (i) Explain each of the following dimensions of knowledge - a) Factual knowledge [2] - b) Conceptual knowledge [2] - c) Procedural knowledge [2] - d) Meta-Cognitive knowledge [2] (ii) The changes from the original Bloom's taxonomy to the new version occur in three broad categories which are terminology, structure and emphasis. Explain each of the three changes. [12] | THEME OR TOPIC | CORE | SUPPLEMENT | |--|---|---| | 22. Functions | | - use function notation, e.g. $f(x) = 3x-5$, $f:x \mapsto 3x-5$ to describe simple functions, and the notation $f^{-1}(x)$ to describe their inverses; form composite functions as defined by $gf(x) = g(f(x))$ | | 23. Indices | use and interpret positive, negative and zero indices | use and interpret fractional indices, e.g. solve 32^x = 2 | | 24. Solutions of equations and
inequalities | solve simple linear equations in one
unknown; solve simultaneous linear
equations in two unknowns | solve quadratic equations by factorisation
and either by use of the formula or by
completing the square; solve simple linear
inequalities | | 25. Linear programming | | represent inequalities graphically and use
this representation in the solution of simple
linear programming problems (the
conventions of using broken lines for strict
inequalities and shading unwanted regions
will be expected) | | 26. Geometrical terms and relationships | use and interpret the geometrical terms:
point, line, parallel, bearing, right angle,
acute, obtuse and reflex angles,
perpendicular, similarity, congruence; use
and interpret vocabulary of triangles,
quadrilaterals, circles, polygons and simple
solid figures including nets | use the relationships between areas of
similar triangles, with corresponding results
for similar figures and extension to volumes
and surface areas of similar solids | | 27. Geometrical constructions | measure lines and angles; construct a
triangle given the three sides using ruler
and compasses only; construct other simple
geometrical figures from given data using
protractors and set squares as necessary;
construct angle bisectors and perpendicular
bisectors using straight edges and
compasses only; read and make scale
drawings | | | 28. Symmetry | recognise rotational and line symmetry
(including order of rotational symmetry) in
two dimensions and properties of triangles,
quadrilaterals and circles directly related to
their symmetries | - recognise symmetry properties of the prism (including cylinder) and the pyramid (including cone); use the following symmetry properties of circles: (a) equal chords are equidistant from the centre (b) the perpendicular bisector of a chord passes through the centre (c) tangents from an external point are equal in length | | 29. Angle properties | - calculate unknown angles using the following geometrical properties: (a) angles at a point (b) angles on a straight line and intersecting straight lines (c) | use in addition the following geometrical properties: (a) angle properties of irregular polygons (b) angle at the centre of a circle is twice the angle at the circumference | | | (c) angles formed within parallel lines (d) angle properties of triangles and quadrilaterals (e) angle properties of regular polygons (f) angle in a semi-circle (g) angle between tangent and radius of a circle | (c) angles in the same segment are equal (d) angles in opposite segments are supplementary; cyclic quadrilaterals | | 30. Locus | - use the following loci and the method of intersecting loci for sets of points in two dimensions: (a) which are at a given distance from a given point (b) which are at a given distance from a given straight line (c) which are equidistant from two given points | | | 31. Mensuration | (d) which are equidistant from two given intersecting straight lines - carry out calculations involving the perimeter and area of a rectangle and triangle, the circumference and area of a circle, the area of a parallelogram and a trapezium, the volume of a cuboid, prism and cylinder and the surface area of a cuboid and a cylinder | - solve problems involving the arc length
and sector area as fractions of the
circumference and area of a circle, the
surface area and volume of a sphere,
pyramid and cone (given formulae for the
sphere, pyramid and cone) | | Comments | | |-----------------------------------|--| | Actual date
of
completion | | | Expected
date of
completion | 23-02-05 | | Teaching/Learning
method(s) | Lecture
Question and
answer. | | Refere | PRIS
M
600K,4 | | Mate
riaß | | | Objectives/content | 1) To define a lower and an upper boundary or fimits 2) To give appropriate upper and lower boundary for data given to a specified accuracy (e.g. measured lengths) 3) To obtain appropriate upper and lower bounds to solutions of simple problems (e.g. the calculations of perimeter and area of a rectangle) given data to a specified accuracy. | | Sub-Topics | Accuracy | | Topic | Estimation and Limits of Accuracy | | Date
Started | 22-02-05 | | Wee | 4 | ## **APPENDIX 3** # Lesson Plan Name: Thobile Shabangu ID No.: 158789 Class: 4B Date: 22-02-2005 Time: 0900-0940h Subject: Mathematics Topic: Estimation and Limits of Accuracy Sub-Topic: Limits of Accuracy ## Lesson Objectives At the end of the lesson pupils should be able to: 1) Identify limits of accuracy as upper and lower bounds of rounded off numbers 2) Calculate the limits of accuracy given a rounded off number #### Resources PRISM book 4 • Teacher's guide | Time | Stage | Teacher's Activity | Students' Activity | |------------|--------------|--|--| | 5 minutes | Introduction | Ask pupils to use their rulers to measure the length of sides of their text book. | Measure | | 25 minutes | Presentation | Ask pupils to say the lengths and writes them on the board Show them the limits of accuracy and how to calculate them | Give the answers Watch and listen | | 10 minutes | Conclusion | Gives summary and asks students some questions. Gives students some exercises. Also gives clarity where needed. | Attempt to solve problems in the exercise. |