UNIVERSITY OF SWAZILAND ## **FACULTY OF EDUCATION** ### **FINAL EXAMINATIONS 2005** TITLE OF PAPER **RESEARCH METHODS AND** **EVALUATION** **PROGRAMME** BED III : : **COURSE NUMBER** **EDF 320 PAPER 1** TIME ALLOWED THREE (3) HOURS ## **INSTRUCTIONS:** 1. This paper is in two parts. 2. Answer all items in section one by putting a circle around the correct response on the answer card provided. - 3. You are advised not to spend more than 45 minutes in this section. - 4. Answer question one, and any TWO other questions from Section B. - 5. Answer cards, formula sheets and the necessary tables are also provided. THIS PAPER IS NOT TO BE OPENED UNTIL PERMISSION TO DO SO, HAS BEEN GRANTED BY THE INVIGILATOR. ### **SECTION ONE** INSTRUCTION: ANSWER ALL ITEMS IN THIS SECTION BY PUTTING A CIRCLE AROUND THE CORRECT RESPONSE ON THE ANSWER CARD PROVIDED. ### ITEM 1 A simple random sampling technique is one in which - a. each member has a 100% chance of being included in the study sample - b. alternate members of the population are included in the study sample - c. everyone is included in the study sample - d. the study is first stratified before the members of the study samples are selected. - e. every member of the population has an equal chance of being included in the sample. #### ITEM 2 In which research situation would the experiment be confounded? - a. the dependent variable varies systematically with the independent variable - b. the dependent variable fails to vary systematically with the independent variable. - c. An extraneous variable varies systematically with the independent variable - d. An extraneous variable fails to vary systematically with the independent variable. - e. when the research is difficult. ### ITEM 3 The significance of a study should point out - a. the population of the study - b. the method used in data collection - c. who will benefit from the study - d. what data will be collected - e. who will collect the data ### ITEM 4 What is the advantage of using the questionnaire in research? - a. it is easy to construct - b. it covers a wide geographical spread of the population sample - c. it has a high response rate - d. even those who cannot read can ask others to respond on their behalf - e. you do not have to meet the person responding An important reason for a literature review is to - a. obtain primary and secondary information of the data - b. determine the statistical significance of previous studies - c. search for information about virgin areas that need to be researched - d. all of the above - e. none of the above #### ITEM 6 Which of these are the characteristics of a one shot case study? - a. ' the dependent variable is measured before event - b. the dependent variable is measured only after the event - c. the dependent variable is measured during the event - d. the dependent variable is measured before, during and after the event - e. no variable is measured at all #### ITEM 7 Which activity is a component of research problem development and refinement? - a. data collection - b. instrument selection - c. literature review - d. qualitative data analysis - e. questionnaire design #### ITEM 8 When a researcher lives with a group of people to observe them, it is called - a. nature observation - b. behavioural observation - c. participant observation - d. subjective observation - e. informal observation #### ITEM 9 Which of the following is true of a positively skewed curve? The - a. mean is always larger than the median and the mode - b. mode is larger than the median - c. mean is smaller than the mode - d. mode is larger than the mean - e. mode and the mean are always equal. Which of these is an advantage of observation studies over experimental research? - a. no experiment needed to be worked out - b. more people are involved in the study - c. the personal views of the observer are very important - d. data are easy to quantify - e. behaviour is recorded when it occurs #### ITEM 11 What is the advantage of using questionnaires as compared to using interview for the same cost? With questionnaires the researcher can - a. achieve a greater depth of information - b. seek clarification of subjects' answers - c. obtain a higher number of responses - d. control the order in which subjects respond - e. keep a record of responses by participants ### ITEM 12 Which is the first step to take in identifying a research topic? - a. work out specific questions that the research should address - b. identify a general area the research should focus on - c. ask your supervisor to help you identify a research topic - d. define the problem - e. all of the above ## **ITEM 13** "Going native" and "getting immersed" are phrases that are associated with - a. historical research - b. experimental research - c. participatory research - d. case study research - e. descriptive research A research proposal must possess one of the following - a. a questionnaire - b. a conclusion - c. an interpretation - d. significance of the study - e. an analysis #### **ITEM 15** In which model of hypothesis formation is the accumulation of data used to form general explanatory principles? - a. oral tradition - b. correlational - c. deductive - d. inductive - e. scientific #### **ITEM 16** In most research it is usual to draw conclusion(s) about a larger group from a smaller group or group(s). What is the term for the larger group? - a. statistics - b. variable - c. population - d. parameter - e. sample ### **ITEM 17** Which of these is true of the Ex post-factor research? - a. the researcher is able to manipulate the independent variable - b. the cause and effect factors are easy to differentiate - c. there is always one cause factor - d. the sample cannot be randomized - e. the findings are easy to confirm A researcher is evaluating a set of research findings. Why would the researcher want to replicate the findings? Replication will promote the - a. interaction of the variables - b. reactivity of the participants - c. internal validity of the study - d. external validity of the study - e. the truth of results # ANSWER QUESTIONS 19 TO 21 FROM THE INFORMATION STATED BELOW. The following are scores for 10 pupils out of a possible 20 points in religious education: 12, 15, 9, 16, 8, 17, 6, 11, 17 and 13 ## ITEM 19 The mean for the test is - a. 11.7 - b. 12.4 - c. 15.2 - d. 9.0 - e. 13.3 ### ITEM 20 What is the median for the distribution? - a. 13 - b. 11.5 - c. 12 - d. 15.5 - e. 12.5 ### ITEM 21 What is the mode of the distribution? - a. 12 - b. 15 - c. 11 - d. 17 - e. none of the above #### **QUESTION 22** In cluster sampling, the unit of the sample is the - a. individual research participant - b. target population - c. naturally occurring groups of individuals - d. stratified proportion of the population - e. accessible population #### **ITEM 23** What can be concluded about the cause and effect relationship between two variables that have a highly significant correlation? - a. no conclusion can be drawn about the cause and effect relationship - b. the cause and effect relationship is significant if the correlation is positive - c. the cause and effect relationship is significant if the correlation is negative - d. there is significant cause and effect relationship between the two variables - e. predictions made are very reliable #### ITEM 24 Which of these is a major weakness of basic research - a. it has no immediate or planned application - b. it is usually carried out with animals and therefore has little relevance for humans - c. it is concerned with extending the boundaries of knowledge - d. the sample is limited - e. none of the above #### **ITEM 25** In research, a factor that is manipulated by the researcher is called - a. independent variable - b. dependent variable - c. intervening variable - d. constant variable - e. measurable ### **ITEM 26** A research method in which the investigation is done after the event has occurred is known as - a. descriptive research - b. experimental research - c. correlational research - d. ex post-factor research - e. basic research If the author of a book reports results of his own experiments, that portion of the text would be considered a - a. primary source - b. secondary source - c. preliminary source - d. literature review - e. generalisation of findings #### **ITEM 28** One of the characteristics of the ex post-factor research is that data are collected - a. before the event - b. during the event - c. after the event - d. both before and after the event - e. both before and during the event ## **SECTION TWO** **INSTRUCTION:** (i) ANSWER QUESTION (1) ONE AND ANY 2 (TWO) OTHER QUESTIONS FROM THIS SECTION. (ii) EACH QUESTION MUST BE ANSWERD IN A SEPARATE BOOKLET ## **QUESTION 1** The following are two sets of test scores for 10 B.Ed students in philosophy of education and educational psychology out of a possible score of 20 marks. | PHILOSOPHY | PSCHOLOGY | | |------------|--------------------------------|------| | 10 | 3 | | | 11 | 10 | | | 10 | 9 | | | 5 | 11 | | | 9 | 7 3 marks for completing the t | able | | 11 | 13 | | | 12 | 14 | | | 9 | 10 | | | 13 | 13 | | | 8 | 11 | | - (i) Declare a null hypothesis and its alternative hypothesis for the situation. 2 marks each = 4 marks - (ii) Determine the relationship between the two variables, and test for significance at the 95% confidence level. 5 marks each = 10 marks - (iii) What is the status of the null hypothesis? 4 marks - (iv) Explain your result 4 marks 24 MARKS ## **QUESTION 2** Choose one ex-post factor research problem. | a. | briefly describe the problem | 8 marks | |----|--|---------| | b. | identify the sample | 4 marks | | C. | identify the independent variable | 4marks | | d. | identify the dependent variable, and | 4 marks | | e. | describe any two (2) problems that you might encounter | 4 marks | 24 MARKS ## **QUESTION 3** - (a) What are the main aims of science as a knowledge producing system? 12 marks - (b) Outline science both as a cyclic process of reasoning and observation and as a social institution. 12 marks 24 MARKS ## **QUESTION 4** Describe in a logical manner at least <u>four</u> common errors, which a researcher may encounter in the formulation of a problem. 4x8 marks 24 MARKS APPENDIX A | df | .1 | .05 | .01 | .001 | |------------------------|--|--|--|--| | 1 | 6.314 | 12.706 | 63.657 | 636.619 | | 2 | 2.920 | 4.303 | 9.925 | 31.598 | | 3 | 2.353 | 3.182 | 5.841 | 12.941 | | 4 | 2.132 | 2.776 | 4.604 | 8.601 | | 5
7
8
9
10 | 2.015
1.943
1.895
1.860
1.833
1.812 | 2.571
2.447
2.365
2.306
2.262
2.228 | 4.032
3.707
3.499
3.355
3.250
3.169 | 6.859
5.959
5.405
5.041
4.781
4.587 | | 11 | 1.796 | 2.201 | 3.106 | 4.437 | | 12 | 1.782 | 2.179 | 3.055 | 4.318 | | 13 | 1.771 | 2.160 | 3.012 | 4.221 | | 14 | 1.761 | 2.145 | 2.972 | 4.140 | | 15 | 1.753 | 2.131 | 2.947 | 4.073 | | 16 | 1.746 | 2.120 | 2.921 | 4.015 | | 17 | 1.740 | 2.110 | 2.898 | 3.965 | | 18 | 1.734 | 2.101 | 2.878 | 3.922 | | 19 | 1.729 | 2.091 | 2.861 | 3.883 | | 20 | 1.725 | 2.086 | 2.845 | 3.850 | | 21 | 1.721 | 2.080 | 2.831 | 3.819 | | 22 | 1.717 | 2.074 | 2.819 | 3.792 | | 23 | 1.714 | 2.069 | 2.807 | 3.767 | | 24 | 1.711 | 2.064 | 2.797 | 3.745 | | 25 | 1.708 | 2.060 | 2.787 | 3.725 | | 26 | 1.706 | 2.056 | 2.779 | 3.707 | | 27 | 1.703 | 2.052 | 2.771 | 3.690 | | 28 | 1.701 | 2.048 | 2.763 | 3.674 | | 29 | 1.699 | 2.045 | 2.756 | 3.659 | | 30 | 1.697 | 2.042 | 2.750 | 3.646 | | 40 | 1.684 | 2.021 | 2.704 | 3.551 | | 60 | 1.671 | 2.000 | 2.660 | 3.460 | | 120 | 1.658 | 1.980 | 2.617 | 3.373 | | α | 1.645 | 1.960 | 2.576 | 3.291 | SOURCE: APPENDIX C from Downie, N.M., and Heath, R.M. Basic Statistical Methods, N.Y.; Harper & Row, Publishers, 1974. ## APPENDIX B # Areas for a Standard Normal Distribution Entries in the table represent the area under the curve between x=0 and a positive value of x. Because of the symmetry of the curve, the area under the curve between x=0 and a negative value of x would be found in a like manner. | z | .00 | .01 | .02 | .03 | .04 | .05 | .06 | .07 | .08 | .09 | |--|--|--|--|--|--|--|--|--|--|--| | 0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9 | .0000
.0398
.0793
.1179
.1554
-1913
.2257
.2580
.2881
.3159 | .0040
.0438
.0832
.1217
.1591
.1950
.2291
.2612
.2910
.3186 | .0080
.0478
.0871
.1255
.1628
.1985
.2324
.2642
.2939
.3212 | .0120
.0517
.0910
.1293
.1664
.2019
.2357
.2673
.2967
.3238 | .0160
.0557
.0948
.1331
.1700
.2054
.2389
.2704
.2995
.3264 | .0199
.0596
.0987
.1368
.1736
.2088
.2422
.2734
.3023
.3289 | .0239
.0636
.1025
.1406
.1772
.2123
.2454
.2764
.3051
.3315 | .0279
.0675
.1064
.1443
.1808
.2157
.2486
.2794
.3078
.3340 | .0319
.0714
.1103
.1480
.1844
.2190
.2518
.2823
.3106
.3365 | .0359
.0753
.1141
.1517
.1879
.2224
.2549
.2852
.3133
.3389 | | 1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9 | .3413
.3643
.3849
.4032
.4192
.4332
.4452
.4554
.4641 | .3438
.3665
.3869
.4049
.4207
.4345
.4463
.4564
.4649
.4719 | .3461
.3686
.3888
.4066
.4222
.4357
.4474
.4573
.4656
.4726 | .3485
.3708
.3907
.4082
.4236
.4370
.4484
.4582
.4664
.4732 | .3508
.3729
.3925
.4099
.4251
.4382
.4495
.4591
.4671
.4738 | .3531
.3749
.3944
.4115
.4265
.4394
.4505
.4599
.4678
.4744 | .3554
.3770
.3962
.4131
.4279
.4406
.4515
.4608
.4686
.4750 | .3577
.3790
.3980
.4147
.4292
.4418
.4525
.4616
.4693
.4756 | .3599
.3810
.3997
.4162
.4306
.4429
.4535
.4625
.4699
.4761 | .3621
.3830
.4015
.4177
.4319
.4441
.4545
.4633
.4706
.4767 | | 2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
4.0 | .4772
.4821
.4861
.4893
.4918
.4938
.4953
.4965
.4974
.4981
.49865 | .4778
.4826
.4864
.4896
.4920
.4940
.4955
.4966
.4975
.4982 | .4783
.4830
.4868
.4898
.4922
.4941
.4956
.4967
.4976
.4982 | .4788
.4834
.4871
.4901
.4925
.4943
.4957
.4968
.4977
.4983 | .4793
.4838
.4875
.4904
.4927
.4945
.4959
.4969
.4977
.4984 | .4798
.4842
.4878
.4906
.4929
.4946
.4960
.4970
.4978
.4984 | .4803
.4846
.4881
.4909
.4931
.4948
.4961
.4971
.4979
.4985 | .4808
.4850
.4884
.4911
.4932
.4949
.4962
.4972
.4979
.4985 | .4812
.4854
.4887
.4913
.4934
.4951
.4963
.4973
.4980
.4986 | .4817
.4857
.4890
.4916
.4936
.4952
.4964
.4974
.4981
.4986 | #### STATISTICAL FORMULAE $$(1).\overline{X} = \frac{\sum X}{N}$$ $$(2).\overline{X} = M' = \frac{\sum fx'}{N} (i)$$ $$(3).x = X - \overline{X}$$ (4).ss = $$\sqrt{\frac{\sum x^2}{N}} or \sqrt{\frac{\sum x^2}{N-1}}$$ $$(5).s^2 = \frac{\sum x^2}{N} 0r \frac{\sum x^2}{N-1}$$ (6). $$\sum x^2 = i^2 \left[\sum f(x')^2 - \frac{\sum (fx')^2}{N} \right]$$ (7). $$s = \sqrt{\frac{\sum X^2}{N} - (\bar{X})^2}$$ (8). $$s = \frac{1}{N} \sqrt{N \sum X^2 - (\sum X)^2}$$ $$(9).Q = \frac{(Q_3 - Q_1)}{2}$$ $$(10).z - score = X - \overline{X}/S$$ $$(11).T - score = 10z + 50$$ $$(12) r = \frac{N \sum XY - \left(\sum X\right) \left(\sum Y\right)}{\sqrt{\left[N \sum X^2 - \left(\sum X\right)^2\right] \left[N \sum Y^2 - \left(\sum Y\right)^2\right]}}$$ $$(13).r = \frac{\sum xy}{\sqrt{\left(\sum x^2\right)\left(\sum y^2\right)}}$$ $$(14) r = \frac{\sum z_x z_y}{N}$$ $$(15)r_{pb} = \frac{\overline{X}_{y} - \overline{X}_{t}}{s_{t}} \left(\sqrt{\frac{p}{q}} \right)$$ $$(15).r_{12.3} = \frac{r_{12} - (r_{13}r_{23})}{\sqrt{(1 - r_{13}^2)(1 - r_{23}^2)}}$$ $$(16).b_{yx} = \frac{\sum XY - \left[\left(\sum X\right)\left(\sum Y\right)/N\right]}{\sum X^2 - \left[\left(\sum X\right)^2/N\right]}$$ $$(17).a_{yx} = \overline{Y} - b_{yx}\overline{X}$$ $$(18).b_{xy} = \frac{\sum XY - \left[\left(\sum X\right)\left(\sum Y\right)/N\right]}{\sum X^2 - \left[\left(\sum X\right)\left(\sum Y\right)/N\right]}$$ $$(18)b_{xy} = \frac{\sum XY - \left[\left(\sum X\right)\left(\sum Y\right)/N\right]}{\sum Y^2 - \left[\left(\sum Y\right)^2/N\right]}$$ $$(19).a_{xy} = \overline{X} - b_{xy}\overline{Y}$$ $$(20).s_{xy} = \sqrt{\left(\sum Y - \overline{Y}\right)^2 / \left(N - 1\right)}$$ $$(21).student - t = \frac{r\sqrt{N-2}}{\sqrt{1-r^2}}$$ $$(22).Y' = a + b_1 X_1 + b_2 X_2 + b_3 X_3$$ $$(23).F_{n_1-1,n_2-1} = \frac{S_g^2}{S_l^2}$$ $$(24) t = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$ $$(25) t = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\left(\frac{\sum x_1^2 + \sum x_2^2}{n_1 + n_2 - 2}\right) \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$ $$26.x^{2} = \sum \frac{\left(O_{i} - E_{i}\right)^{2}}{E_{i}}$$ $$27.TOTAL_{SS} = \sum X^{2} - \frac{\left(\sum X\right)^{2}}{n}$$ $$WITHIN_{SS} = \sum X^{2} - \frac{\sum (X)}{n}$$ $$31.df_t = (n-1)$$ $$32.df_b = (k-1)$$ $$33 df_w = (n-k)$$ $$MS_{SS} = \frac{SS_b}{df_b}$$ $$34 MS_b = \frac{SS_w}{df_w}$$ $$35.F = \frac{MS_b}{MS_w}$$ $$(15).r_{12.3} = \frac{r_{12} - (r_{13}r_{23})}{\sqrt{(1 - r_{13}^2)(1 - r_{23}^2)}}$$ APPENDIX A | df | . 1. | . 05 | .Ol | .001 | |------------------------|--|--|--|--| | 1 | 6.314 | 12.706 | 63.657 | 636.619 | | 2 | 2.920 | 4.303 | 9.925 | 31.598 | | 3 | 2.353 | 3.182 | 5.841 | 12.941 | | 4 | 2.132 | 2.776 | 4.604 | 8.601 | | 5
7
8
9
10 | 2.015
1.943
1.895
1.860
1.833
1.812 | 2.571
2.447
2.365
2.306
2.262
2.228 | 4.032
3.707
3.499
3.355
3.250
3.169 | 6.859
5.959
5.405
5.041
4.781
4.587 | | 11 | 1.796 | 2.201 | 3.106 | 4.437 | | 12 | 1.782 | 2.179 | 3.055 | 4.318 | | 13 | 1.771 | 2.160 | 3.012 | 4.221 | | 14 | 1.761 | 2.145 | 2.972 | 4.140 | | 15 | 1.753 | 2.131 | 2.947 | 4.073 | | 16 | 1.746 | 2.120 | 2.921 | 4.015 | | 17 | 1.740 | 2.110 | 2.898 | 3.965 | | 18 | 1.734 | 2.101 | 2.878 | 3.922 | | 19 | 1.729 | 2.091 | 2.861 | 3.883 | | 20 | 1.725 | 2.086 | 2.845 | 3.850 | | 21 | 1.721 | 2.080 | 2.831 | 3.819 | | 22 | 1.717 | 2.074 | 2.819 | 3.792 | | 23 | 1.714 | 2.069 | 2.807 | 3.767 | | 24 | 1.711 | 2.064 | 2.797 | 3.745 | | 25 | 1.708 | 2.060 | 2.787 | 3.725 | | 26 | 1.706 | 2.056 | 2.779 | 3.707 | | 27 | 1.703 | 2.052 | 2.771 | 3.690 | | 28 | 1.701 | 2.048 | 2.763 | 3.674 | | 29 | 1.699 | 2.045 | 2.756 | 3.659 | | 30 | 1.697 | 2.042 | 2.750 | 3.646 | | 40 | 1.684 | 2.021 | 2.704 | 3.551 | | 60 | 1.671 | 2.000 | 2.660 | 3.460 | | 120 | 1.658 | 1.980 | 2.617 | 3.373 | | α | 1.645 | 1.960 | 2.576 | 3.291 | SOURCE: APPENDIX C from Downie, N.M., and Heath, R.M. Basic Statistical Methods, N.Y.; Harper & Row, Publishers, 1974. ## APPENIDIX B ## Areas for a Standard Normal Distribution Entries in the table represent the area under the curve between z=0 and a positive value of z. Because of the symmetry of the curve, the area under the curve between z=0 and a negative value of z would be found in a like manner. | , z | .00 | .01 | .02 | .03 | .04 | .05 | .06 | .07 | .08 | .09 | |--|---|--|--|--|--|--|--|--|--|--| | 0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9 | .0000
.0398
.0793
.1179
.1554
.1913\
.2757
.2580
.2881
.3159 | .0040
.0438
.0832
.1217
.1591
.1950
2291
.2612
.2910
.3186 | .0080
.0478
.0871
.1255
.1628
.1985
.2324
.2642
.2939
.3212 | .0120
.0517
.0910
.1293
.1664
.2019
.2357
.2673
.2967 | .0160
.0557
.0948
.1331
.1700
.2054
.2389
.2704
.2995 | .0199
.0596
.0987
.1368
.1736
.2088
.2422
.2734
.3023
.3289 | .0239
.0636
.1025
.1406
.1772
.2123
.2454
.2764
.3051 | .0279
.0675
.1064
.1443
.1808
.2157
.2486
.2794
.3078
.3340 | .0319
.0714
.1103
.1480
.1844
.2190
.2518
.2823
.3106
.3365 | .0359
.0753
.1141
.1517
.1879
.2224
.2549
.2852
.3133
.3389 | | 1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8 | .3413
.3643
.3849
.4032
.4192
.4332
.4452
.4554
.4641 | .3438
.3665
.3869
.4049
.4207
.4345
.4463
.4564
.4649
.4719 | .3461
.3686
.3888
.4066
.4222
.4357
.4474
.4573
.4656
.4726 | .3485
.3708
.3907
.4082
.4236
.4370
.4484
.4582
.4664
.4732 | .3508
· .3729
.3925
.4099
.4251
.4382
.4495
.4591
.4671
.4738 | .3531
.3749
.3944
.4115
.4265
.4394
.4505
.4599
.4678
.4744 | .3554
.3770
.3962
.4131
.4279
.4406
.4515
.4608
.4686
.4750 | .3577
.3790
.3980
.4147
.4292
.4418
.4525
.4616
.4693
.4756 | .3599
.3810
.3997
.4162
.4306
.4429
.4535
.4625
.4699 | .3621
.3830
.4015
.4177
.4319
.4441
.4545
.4633
.4706
.4767 | | 20
21
22
23
24
25
26
27
28
29 | .4772
.4821
.4861
.4893
.4918
.4938
.4953
.4965
.4974
.4981 | .4778
.4826
.4864
.4896
.4920
.4940
.4955
.4966
.4975
.4982 | .4783
.4830
.4868
.4898
.4922
.4941
.4956
.4967
.4976
.4982 | .4788
.4834
.4871
.4901
.4925
.4943
.4957
.4968
.4977
.4983 | .4793
.4838
.4875
.4904
.4927
.4945
.4959
.4969
.4977
.4984 | .4798
.4842
.4878
.4906
.4929
.4946
.4960
.4970
.4978
.4984 | .4803
.4846
.4881
.4909
.4931
.4948
.4961
.4971
.4979
.4985 | .4808
.4850
.4884
.4911
.4932
.4949
.4962
.4972
.4979
.4985 | .4812
.4854
.4887
.4913
.4934
.4951
.4963
.4973
.4980
.4986 | .4817
.4857
.4890
.4916
.4936
.4952
.4964
.4974
.4981
.4986 | | 4.0 | .49997 | | | | | ,c | - | | | | ## STATISTICAL FORMULAE $$(1).\overline{X} = \frac{\sum X}{N}$$ $$(2).\overline{X} = M' = \frac{\sum fx'}{N} (i)$$ $$(3).x = X - \overline{X}$$ (4). $$ss = \sqrt{\frac{\sum x^2}{N}} or \sqrt{\frac{\sum x^2}{N-1}}$$ $$(5).s^2 = \frac{\sum x^2}{N} 0r \frac{\sum x^2}{N-1}$$ (6). $$\sum x^2 = i^2 \left[\sum f(x')^2 - \frac{\sum (fx')^2}{N} \right]$$ $$(7).s = \sqrt{\frac{\sum X^2}{N} - \left(\overline{X}\right)^2}$$ (8). $$s = \frac{1}{N} \sqrt{N \sum X^2 - (\sum X)^2}$$ $$(9).Q = \frac{(Q_3 - Q_1)}{2}$$ $$(10).z - score = X - \overline{X}/S$$ $$(11).T - score = 10z + 50$$ $$(12) r = \frac{N \sum XY - \left(\sum X\right) \left(\sum Y\right)}{\sqrt{\left[N \sum X^2 - \left(\sum X\right)^2\right] \left[N \sum Y^2 - \left(\sum Y\right)^2\right]}}$$ $$(13) r = \frac{\sum xy}{\sqrt{\left(\sum x^2\right)\left(\sum y^2\right)}}$$ $$(14).r = \frac{\sum z_x z_y}{N}$$ $$(15) r_{pb} = \frac{\overline{X}_y - \overline{X}_t}{S_t} \left(\sqrt{\frac{p}{q}} \right)$$ $$(16).b_{yx} = \frac{\sum XY - \left[\left(\sum X\right)\left(\sum Y\right)/N\right]}{\sum X^2 - \left[\left(\sum X\right)^2/N\right]}$$ $$(17).a_{yx} = \overline{Y} - b_{yx}\overline{X}$$ $$(18).b_{xy} = \frac{\sum XY - \left[\left(\sum X\right)\left(\sum Y\right)/N\right]}{\sum Y^2 - \left[\left(\sum Y\right)^2/N\right]}$$ $$(19).a_{xy} = \overline{X} - b_{xy}\overline{Y}$$ $$(20).s_{xy} = \sqrt{\left(\sum Y - \overline{Y}\right)_{i}^{2} / \left(N - 1\right)}$$ $$(21).student - t = \frac{r\sqrt{N-2}}{\sqrt{1-r^2}}$$ $$(22)Y' = a + b_1 X_1 + b_2 X_2 + b_3 X_3$$ $$(23).F_{n_1-1,n_2-1} = \frac{S_g^2}{S_I^2}$$ $$(24)t = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$ $$(25).t = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\left(\frac{\sum x_1^2 + \sum x_2^2}{n_1 + n_2 - 2}\right)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$ $$26.x^2 = \sum \frac{\left(O_i - E_i\right)^2}{E_i}$$ $$27.TOTAL_{SS} = \sum X^2 - \frac{\left(\sum X\right)^2}{n}$$ $$WITHIN_{SS} = \sum \sum X^2 - \frac{\sum (X)}{n}$$ $$31.df_t = (n-1)$$ $$32.df_b = (k-1)$$ $$31.df_{t} = (n-1)$$ $$32.df_{b} = (k-1)$$ $$33.df_{w} = (n-k)$$ $$MS_{SS} = \frac{SS_b}{df_b}$$ $$MS_{SS} = \frac{SS_b}{df_b}$$ $$34MS_b = \frac{SS_w}{df_w}$$ $$35F = \frac{MS_b}{MS_W}$$ $$35 F = \frac{MS_b}{MS_w}$$