

UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATION PAPER

PROGRAMMES: BSc. LWM 3

COURSE CODE: LUM 303

TITLE OF PAPER: FLUID AND SOIL MECHANICS

TIME ALLOWED: TWO (2) HOURS

SPECIAL MATERIAL REQUIRED: NONE

INSTRUCTIONS: ANSWER QUESTION ONE AND ANY TWO OTHER QUESTIONS

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

QUESTION 1

a. Starting with the Bernoulli and Continuity equations derive the following expression
 that can be used to measure flow rate with a Venturi meter. [15 marks]

$$Q_{actual} = c_d A_1 A_2 \sqrt{\frac{2g\left[\frac{p_1 - p_2}{\rho g} + z_1 - z_2\right]}{A_1^2 - A_2^2}}$$

b. Also show that when the pressure difference is measured using a manometer the following expression can be used; [15 marks]

$$Q_{actual} = c_d A_1 A_2 \sqrt{\frac{2gh\left(\frac{\rho_{man}}{\rho} - 1\right)}{{A_1}^2 - {A_2}^2}}$$

c. A vane of length 250mm and diameter 100mm is used to measure the shear strength of a saturated soil. If the torque required to fail the vane is 518 Nm, calculate the apparent shear strength of the soil.
[10 marks]

QUESTION 2

a. What are the two forms of expressing failure envelope?

[5 marks]

b. Outline and discuss the steps of conducting an unconfined compression test. What is the relationship between unconfined compressive strength and undrained shear strength?

[15 marks]

c. What size pipe of new cast iron pipe, 244m long, will deliver $1.06 \text{ m}^3/\text{s}$ of water with a drop in the in the hydraulic grade line of 65.60 m? (Assume V = 3.96 m/s and f = 0.02)

[10 marks]

QUESTION 3

- a. A rectangular channel 30.5m wide carries 11.3m³/s.
 - (i) Tabulate (as preliminary to preparing a diagram) depth of flow against specific energy for depths from 0.3m to 2.5m. [5 marks]
 - (ii) Determine the minimum specific energy. [5 marks]
 - (iii) What type of flow exists when the depth is 0.6m and when it is 2.5m?

[10 marks]

(iv) For C = 100, what slopes are necessary to maintain the depths in (iii).

[10 marks]

QUESTION 4

a. In a compaction test the weight of wet soil in the mould (0.001m³) was 1.88kg. By drying out a small quantity of the soil its moisture content was found to be 20.7%. The specific gravity of the particles was 2.72. Determine;

(i) The dry density

[5 marks]

(ii) The void ratio

[5marks]

(iii) The percentage air voids

[5 marks]

b. Outline the Stoke's law of sedimentation

[10 marks]

c. What is the atmospheric pressure in kPa when a mercury barometer reads 742mm?

[5 marks]

APPENDIX

$$E = y + \frac{V^2}{2g}$$

$$y_c = \sqrt[3]{q^2/g} = \frac{3}{2}E_c = V_c^2/g$$

$$Q = CA\sqrt{RS}$$

$$E_{\min} = \frac{3}{2} \sqrt[3]{q^2/g}$$

$$V_c / \sqrt{gy_c} = Fr = 1$$

$$T = c(\pi dh)\frac{d}{2} + c\left(\pi \frac{d^2}{4}\right)\frac{1}{3}d \times 2$$

$$T = c_{\nu} \left(\pi dh\right) \frac{d}{2} + c_{H} \left(\pi \frac{d^{2}}{4}\right) \frac{1}{3} d \times 2$$