

UNIVERSITY OF SWAZILAND FINAL EXAMINATION PAPER

PROGRAMME: BSC AGRIC III (LWM)

COURSE CODE: LUM 304 (NEW PROGRAMME)

TITLE OF PAPER: RURAL WATER SUPPLY AND HYDROLOGY

TIME ALLOWED: TWO (2) HOURS

INSTRUCTIONS: ANSWER QUESTION ONE AND ANY TWO OTHER QUESTIONS.

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

SECTION I: COMPULSARY QUESTION 1

- A) An earth dam is to be constructed to provide storage of at least 120, 000 m³ of irrigation water. The catchment from which the water will be obtained has a total size of 144 ha of sandy clay soil. The catchment is 800 m wide, and has a maximum length of 1800 m with a slope of 10 m fall over the full length. The area receives an average rainfall of 800 mm/year. The rainfall intensity for the catchment area is 100 mm/h with a runoff coefficient of 0.36.
 - i. Determine if the catchment is capable of providing enough water for the required storage of 120, 000 m³. (See Table 1.1). [10 marks]
 - ii. Calculate the design peak runoff to accommodate the 100 mm/h storm.

[10 marks]

$$Q = \frac{CiA}{360} \tag{1}$$

B) i. Name the three (3) types of earth dams.

[6 marks]

ii. Briefly discuss the role of water storage in land and water management.

[14 marks]

Table 1.1. Runoff from catchment areas

Average	Total	Reliability	Runoff as a % of average rainfall, Y			
rainfall, R (mm)	annual evap.	(yrs out of 10)	Shallow sand or	Sandy clays (%)	Elastic clays	Clay pans, inelastic
	(mm)		loam soils			clays or
			(%)			shales (%)
> 1100	-	8	10 - 15	0 – 15	15 – 20	15 - 25
	-	9	6.5 - 10	6.5 - 10	10 – 13	10 – 16.5
	_	8	10 – 12.5	10 - 15	12.5 - 20	15 - 20
	-	9	6.5 – 8	6.5 - 10	8 – 13	10 - 13
901 -	-	8	10-12.5	10 - 15	12.5 - 20	15 - 20
1100						
	-	9	6.5 – 8	6.5 - 10	8 – 13	10 - 13
501 – 900	< 1300	8	7.5 -10	7.5 – 15	7.5 – 15	10 - 15
		9	5 – 6.5	5 – 10	5 – 10	6.5 - 10
	1300-	8	5-7.5	5-12.5	5-10	10-15
	1800					
		9	3-5	3-8	3-6.5	6.5-10
401-500	1300-	8	2.5-5	5-10	2.5-5	7.5-12.5
	1800					
		9	1.5-3	3-6.5	1.5-3	5-8
250-400	<1800	8	0-2.5	0-5	0-2.5	2.5-7.5
		9	0-1.5	0-3	0-1.5	1.5-5
	≥1800	8	0	0-2.5	0	2.5-5
		9	Q	0-1.5	Q	1,5-3

Source: Nelson (1985)

SECTION II: ANSWER ANY TWO QUESTIONS

QUESTION 2

What are the possible sources of pollution in the following?

i. Water harvested from roof tops	[10 marks]
ii. Water collected from streams	[10 marks]
iii. Ground water	[10 marks]

QUESTION 3

Discuss the major potentials and challenges of promoting water harvesting technologies for domestic use in Swaziland [30 marks]

QUESTION 4

Discuss the major impacts of agricultural activities on the quality of water in Swaziland [30 marks]