SUPP.2007/2008 PAGE 1 OF 4

UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATION PAPER

PROGRAMMES: BSc. Agric 3 (LWM)

COURSE CODE: LUM 303 (NEW PROGRAMME)

TITLE OF PAPER: FLUID AND SOIL MECHANICS

TIME ALLOWED: TWO (2) HOURS

SPECIAL MATERIAL REQUIRED: MATHEMATICAL BOX OF INSTRUMENTS AND GRAPH PAPER

INSTRUCTIONS: ANSWER QUESTION ONE AND ANY TWO OTHER QUESTIONS

DO NOT OPEN THIS PAPER UNTIL PERMISION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

SECTION 1: COMPULSORY

QUESTION 1

(a) With the aid of sketches explain the difference between active and passive soil failure.

[15 marks]

(b) A series of direct shear box tests is performed on a moist silt soil. The shear box is a square single ring device with a sample length and width of 5.08×5.08 cm. At soil failure, the following shear forces, T, were recorded for different vertical forces, N. Find the cohesion and angle of internal friction of the soil. [20 marks]

N (N)	20	40	80	160	360	
T (N)	31	40	59	100	175	

(c) Define permeability

[5 marks]

SECTION 2: ANSWER ANY TWO QUESTIONS

QUESTION 2

(a) A 3000kW track laying tractor with a mass of 50 tonnes and a 4.8m blade cuts the soil at a 400mm depth. Given that the mass of the blade, excluding the arms is 4 tonnes, calculate;

(i) The effective soil force, P.

[15 marks]

(ii) The draft, H.

[5 marks]

(iii) The vertical force, V.

[5 marks]

Given that, $\alpha = 53^{\circ}$, $\gamma = 19.6kN/m^3$, $\phi = 30^{\circ}$, $\delta = 20^{\circ}$, c = 20kPa, and $c_a = 4kPa$

(b) State the Bernoulli's theorem and discuss its significance in fluid dynamics. [5 marks]

QUESTION 3

(a) Define the following terms and outline their significance with regard to fluid mechanics;

(i) Specific weight

[5 marks]

(ii) Fluid pressure

[5 marks]

(iii) Viscosity

[5 marks]

(iv) Flow nets

[5 marks]

(b) A rectangular channel conveys water at $6.0 \text{ m}^3/\text{s}$. Find the critical depth, y_c , and critical velocity, v_c , for the following widths:

(i) Four meters

[5 marks]

(ii) Three meters

[5 marks]

QUESTION 4

(a) Define effective stress and comment on its importance in practical soil mechanics.

[10 marks]

(b) A 1m diameter new cast iron pipe (C=130) is 845m long and has a loss of 1.11m. Find the discharge capacity of the pipe according to the Hazen-Williams formula.

[10 marks]

(c) Write short notes on pump performance (characteristics) curves.

[10 marks]

APPENDIX

$$y_c = \sqrt[3]{\frac{q^2}{g}}$$

$$q = \frac{Q}{w}$$

$$\cot \beta = \frac{\sqrt{\frac{\sin(\alpha + \delta)\sin(\delta + \phi)}{\sin \alpha \sin \phi} - \cos(\alpha + \delta + \phi)}}{\sin(\alpha + \delta + \phi)}$$

$$k_p = \frac{\left(\cot \alpha + \cot \beta\right) \sin(\beta + \phi)}{2\sin(\alpha + \beta + \delta + \phi)}$$

$$k_{ca} = \frac{-\cos(\alpha + \beta + \phi)}{\sin\alpha\sin(\alpha + \beta + \delta + \phi)}$$

$$P = (\gamma h^2 k_p + chk_c + c_a hk_{ca}) w$$

$$H = P\sin(\alpha + \delta) + c_a h w \cot \alpha$$

$$V = P\cos(\alpha + \delta) - c_a h w + W$$

The Hazen-Williams formula is given by;

$$V = 0.8492 CR^{0.63} S^{0.54}$$