2ndSEM.2006/2007

PAGE 1 OF 2

UNIVERSITY OF SWAZILAND FINAL EXAMINATION PAPER

PROGRAMME: BSC AGRIC III (LWM)

COURSE CODE: LUM 304 (New Programme)

TITLE OF PAPER: RURAL WATER SUPPLY AND HYDROLOGY

TIME ALLOWED: TWO (2) HOURS

SPECIAL MATERIAL REQUIRED: NONE

INSTRUCTIONS: ANSWER QUESTION ONE AND ANY TWO OTHER QUESTIONS

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

LUM 304 PAGE 2 OF 2

SECTION I: COMPULSORY QUESTION

QUESTION 1

a) With the aid of a clearly labelled diagram, describe the runoff process. (15 marks)

b) A geological map shows that a 45-m thick confined aquifer lies beneath an area where several homesteads are settled. Analysis of several piezometers drilled through the aquifer shows that the piezometric surface is 25 m below the ground surface. The groundwater is confined at a pressure of 154 kPa. With the aid of calculations and a clearly labelled diagram show how deep the top and bottom boundaries of the aquifer are from the ground surface. (25 marks)

SECTION II: ANSWER TWO QUESTIONS FROM THIS SECTION

QUESTION 2

- (a) What is meant by time of concentration in runoff process, and how is it accounted for in estimating peak runoff from a catchment using methods such as the ration formula? (10 marks)
- (b) An impermeable limestone at the depth of 1.2 m underlies a 120-ha catchment with good drainage properties. The catchment has negligible surface storage and the field capacity of the soil overlying the limestone is 0.125 cm³ cm⁻³. During the wet part of the year the following measurements of rainfall and potential evaporation are taken:

Parameter	Sept	Oct	Nov	Dec	Jan	Feb	Mar	Apr
Mean rainfall (mm)	85	90	70	65	60	135	200	65
Potential evapo-	70	65	45	90	85	80	95	100
transpiration (mm)								

At the end of August, the soil profile had 120 mm of water. From these data, draw up a monthly balance sheet of water in the catchment and estimate the amount of runoff (m³) potentially available during the eight-month period. State the assumptions used in your estimation of the runoff (20 marks)

QUESTION 3

Hydrologically, Swaziland has many rivers that flow through the country, and yet the country faces water shortage. Discuss this apparent paradox (30 marks)

QUESTION 4

Discuss the major challenges Swaziland faces regarding the problem of water pollution, and how the country is tackling the problem. (30 marks)

LUM 304 PAGE 3 OF 3

USEFUL EQUATIONS

Thiem's equation for confined aquifer

$$q = \frac{2 \pi K D (h_2 - h_1)}{\ln (r_2/r_1)}$$
 (1)

where

q =the well discharge (m^3/d)

K = hydraulic conductivity (m/d)

D = aquifer thickness (m)

 r_1 and r_2 = respective distances of the piezometers from the pumped well (m)

 h_1 and h_2 = the respective steady-state elevations of the water levels (from the bottom of the pumped well) in the observation wells (m)

Thiem's equation for unconfined aquifer

$$q = \frac{\pi K (h_2^2 - h_1^2)}{\ln (r_2/r_1)}$$
 (2)

where

q =the well discharge (m^3/d)

K = hydraulic conductivity (m/d)

 r_1 and r_2 = the respective distances of the observation wells from the pumping well (m)

 h_1 and h_2 = the respective steady-state elevations of the water levels (from the bottom of the pumped well) in the observation wells (m)