

# UNIVERSITY OF SWAZILAND FINAL EXAMINATION PAPER

PROGRAMME: DIPLOMA IN AGRICULTURE 3
DIPLOMA IN AGRICULTURAL EDUCATION 3

**COURSE CODE: LUM 302** 

TITLE OF PAPER: SOIL AND WATER CONSERVATION

TIME ALLOWED: TWO (2) HOURS

SPECIAL MATERIAL REQUIRED: NONE

INSTRUCTIONS: ANSWER QUESTION ONE AND ANY TWO OTHER QUESTIONS.

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

LUM 302 PAGE 2 OF 5

# **SECTION A: COMPULSORY QUESTION**

## **QUESTION 1**

a) Discuss the 3 methods of areal rainfall data analysis.

[12 marks]

b) Name and illustrate the different classes of storms.

[12 marks]

- c) A smallholder farmer in the lower Middleveld of Swaziland owned a maize storage warehouse with a roof area of 11.0m x 22.0m in plan view. The average annual rainfall received in this area was reported to be 750mm. Assuming a 20% loss, taking into account evaporation and other losses,
  - i) Calculate the amount of rainfall water that could be harvested annually. [5 marks]
  - ii) Calculate the amount of rainfall that could be collected or harvested per day, assuming it rained everyday. [5 marks]
  - iii) If for some reason, the farmer has to store all the water, and he finds that only 30,000-liter capacity tanks are available, how many does he have to purchase to store the amount of water harvested in the year.

[6 marks]

# SECTION B: ANSWER ANY TWO QUESTIONS IN THIS SECTION

#### **QUESTION 2**

a) The Infiltration rate was monitored as a function of cumulative rainfall and found to be 20mm/h when a total of 100mm had infiltrated. If the eventual steady state infiltration was 5mm/h, estimate the infiltration rate at cumulate infiltration of 200mm and 400mm, using the Green-Ampt equation.

i(t) = ic + b/I

[15 marks]

b) Define and illustrate the concept of steady state infiltration.

[3 marks]

c) Discuss four factors that influence infiltration.

[12 marks]

LUM 302 PAGE 3 OF 5

### **QUESTION 3**

a) About 7% of the country (Swaziland) is in an eroded state. Another 31.5% is under high risk of erosion (Manyatsi, 1997). Outline the causes of the worsening state of erosion in Swaziland. [5 marks]

b) Swazis are traditionally and predominantly livestock farmers. Briefly describe the activities of these livestock as they influence land degradation.

[10 marks]

c) Describe in detail the general approaches of soil conservation in cultivated land.

[15marks]

## **QUESTION 4**

- a) Describe briefly the factors that affect rainfall erosivity. [5 marks]
- b) Design a parabolic grass waterway to convey peak flow of 6m<sup>3</sup>/s on a 1% slope over an erodible sandy soil with Bermuda grass vegetation, which stands in a good stand cut to a height of 5cm. [15 marks]
- c) Several factors are responsible for the onset, rate and amount of soil erosion due to water. Explain. [10 marks]

Guide values for Manning's n

| Land use or cover                      | Manning's n              |
|----------------------------------------|--------------------------|
| Bare soil                              |                          |
| roughness depth <25 mm                 | 0.010-0.030              |
| roughness depth 25-50 mm               | 0.014-0.033              |
| roughness depth 50-100 mm              | 0.023-0.038              |
| roughness depth >100 mm                | 0.045-0.049              |
| Bermuda grass - sparse to good cover   |                          |
| very short (>50 mm)                    | 0.015-0.040              |
| short (50-100 mm)                      | 0.030-0. <del>0</del> 60 |
| medium (150-200 mm)                    | 9.030-0.08 نسپريد        |
| ************************************** | 0.040-0.150              |
| very long (>600 mm)                    | 0.060-0.200              |
| Bermuda grass - dense cover            | 0.300-0.480              |
| Other dense sod-forming grasses        | 0.390-0.630              |
| Dense bunch grasses                    | 0.150                    |
| Kudzu                                  | 0.070-0.230              |
| Lespedeza                              | 0.100                    |
| Natural rangeland                      | 0.100-0.320              |
| Clipped rangeland                      | 0.020-0.240              |
| Wheat straw mulch                      | 0,000 0,24               |
| 2.5 t/ha                               | 0.050-0.06               |
| 5.0 t/ha                               | 0.075-0.15               |
| 7.5 t/ha                               | 0.100-0.20               |
| 10.0 t/ha                              | 0.130-0.25               |
| Chopped maize stalks                   | 0.130 -0.23              |
| 2.5 t/ha                               | 0.012-0.05               |
| 5.0 t/ha                               | 0.020-0.07               |
| 10.0 t/ha                              | 0.023-0.13               |
| Cotton                                 | 0.070-0.09               |
| Wheat                                  | 0.100-0.30               |
| Sorghum                                | 0.040-0.11               |
| Concrete or asphalt                    | 0.010-0.01               |
| Gravelled surface                      | 0.012-0.03               |
| Chisel-ploughed soil                   | ******                   |
| <0.6 t/ha residue                      | 0.006-0.17               |
| 0.6-2.5 t/hz residue                   | 0.070-0.34               |
| 2.5-7.5 t/ha residue                   | 0.190-0.47               |
| Disc-harrowed soil                     |                          |
| <0.6 t/ha residue                      | 0.008-0.41               |
| 0.6-2.5 t/ha residue                   | 0.100-0.25               |
| 2.5-7.5 t/ha residue                   | 0.140-0.53               |
| No tillage                             |                          |
| <0.6 t/ha residue                      | 0.030-0.0                |
| 0.6-2.5 t/ha residue                   | 0.010-0.13               |
| 2.5-7.5 t/hs residue                   | 0.160-0.4                |
| Bare mouldboard-ploughed soil          | 0.020-0.1                |
| Bare soil tilled with coulter          | 0.050-0.1                |

After Petryk and Bosmajian (1975), Temple (1982) and Engman (1986).

| Τ   | Area                | bd + Zd <sup>2</sup>                                              |
|-----|---------------------|-------------------------------------------------------------------|
|     | Wetted<br>perimeter | $b+2d\sqrt{1+Z^2}$                                                |
| 0 0 | Hydraulic<br>radius | $\frac{bd + Zd^2}{b + 2d \sqrt{1 + Z^2}}$                         |
| b e | Top<br>width        | t = b + 2dZ<br>T = b + 2DZ                                        |
| T . | Area                | <u>2</u> td                                                       |
|     | Wetted perimeter    | 1                                                                 |
| 0,1 | Hydraulic<br>radius | $\frac{t^2d  (approx.)}{1.5t^2 + 4d^2  \frac{2d}{3}}$             |
|     | Top<br>width        | $t = \frac{3a}{2d}  T = t \left(\frac{O}{d}\right)^{\frac{1}{2}}$ |

|                             | shal                          | coa            | stiff                             | firm           | san        | coa         | ligh             | very                  |             | Mat       | Max                                                                                  |
|-----------------------------|-------------------------------|----------------|-----------------------------------|----------------|------------|-------------|------------------|-----------------------|-------------|-----------|--------------------------------------------------------------------------------------|
| hard cemented conglomerates | shale, hardnan, soft rock etc | coarse gravels | stiff clay or stiff gravelly soil | firm clay loam | sandy soil | coarse sand | light loose sand | very light silty sand |             | Material  | Maximum safe velocities (m/s) in channels based on covers expected after two seasons |
| 2.5                         | 1.8                           | 1.5            | 1.5                               | 1.0            | 0.75       | 0.75        | 0.5              | 0.3                   | ı           | Bare      | nnels based on o                                                                     |
| *                           | 2.1                           | 1.8            | 1.8                               | 1.7            | 1.5        | 1.25        | 0.9              | 0.75                  | grass cover | Medium    | covers expected after                                                                |
| *                           | *                             | *              | 2.5                               | 2.3            | 2.0        | 1.7         | 1.5              | 1.5                   | grass cover | Very good | two seasons                                                                          |