

UNIVERSITY OF ESWATINI

Supplementary Examination Paper

Programme: Bachelor of Science in Agronomy, Year 4

Course Code:

CPR 402

Title of Paper:

Soil Management

Time Allowed:

2 hours

Instructions:

Answer All Questions

Do Not Open This Question until Permission has been granted by the Invigilator

Question 1:

- (a) Outline in reasonable detail why care should be taken in removing soil samples from a field before testing the soil fertility levels (5 marks).
- (b) What is meant by the term lime requirement (1 mark)?
- (c) List the elements found in ground limestone (1 mark).
- (d) Explain the term Cation exchange capacity (CEC) (1 mark).
- (e) Mention a three soil types where CEC is very low (3 marks).
- (f) Describe a method by which the low CEC in an Oxisol may be increased in a soil (9 marks).

Question 2: Data below showed the mean soil properties of the top 50cm depth of a soil classified as Typic Ustalf:

Table 1: physical properties of a soil classified as Typic Ustalf, Luvengo, Campus

Nutrient	C mol/kg
Ca ²⁺	9.9
Ca ²⁺ Mg ²⁺ K ⁺ Al ³⁺	2.1
K ⁺	2.0 •
Al³+	7.6
NH4 ⁺ Na ⁺	0.6
Na [™]	0.1
CEC	21.7
H ⁺	1.0
SO ₄ (mg/kg)	4.2
H_2PO_4 (mg/kg)	2.1
pH-water	5.5
pH-CaCl ₂	3.5

- i. Calculate the ECEC of the soil (1 marks)
- ii. Calculate the CEC of the soil in Cmol/kg.(1 mark).
- iii. Calculate the base saturation percentage of the soil (2 marks)
- iv. Calculate the Delta pH of the soil. What is the implication of this value for managing this soil (1 mark)?
- v. Define the critical value of any nutrient element (2 marks)
- vi. What is difference between Land Capability Classification and Fertility Capability Classification (2 marks)?
- vii. Using the data above, evaluate how suitable this soil type is for maize cultivation (11 marks)

Question 3: A field experiment (rotation of sweet corn—groundnut—sweet corn—groundnut—sweet corn) was initiated in April 1997. Some physico-chemical properties are shown in Table 1. The treatments were as follows: Recommended inorganic fertilizer NPK with crop residues (T1), recommended inorganic fertilizer NPK without crop residue (T2) and one half-dose of recommended inorganic fertilizer NPK with crop residue combined with 10 t/ha (T3). Results of the effect of the treatments on extractable phosphorus are shown in Table 2. Briefly interpret the data (Tables 2 & 3) and state with reasons the best treatment combination that improved the extractable P in the soils planted to these crops (20 marks).

Table 2: selected physic-chemical properties of the experimental sites

		Soil Depth (cm)	
Variables	0-20	20-40	40-60
pH-water	5.30	4.90	4.79
Org. C (g/kg)	1.66	1.01	0.67
Available P (mg/kg)	12.60	7.88	2.53
		Cations & Cl	EC (C mol/kg)
K	0.12	0.09	0.06
Ca	0.85	0.98	0.63
Mg	1.28	2.29	1.36
CEC	6.68	5.51	4.18
		· %	
Sand	61.80	59.0	54.70
Silt	4.60	3.90	3.70
Clay	33.60	37.10	41.60
Bulk Density (g/cm ³)	1.28	1.49	1.61

Question 4. The following soil orders of the USDA Soil Taxonomy are given:

- i. Spodosols
- ii. Alfisols
- iii. Ultisols
- iv. Andisols
- v. Oxisols
 - a) Arrange these soil orders in the order of their ages (i.e. from the oldest to the youngest). (2 marks)
 - b) Briefly enumerate at least three characteristics that can be used to distinguish each of these Soil Orders of the USDA Soil Taxonomy (15 marks).
 - c) Explain how your will manage these soils if they have variable charges (3 marks)

			Crup cycle		
Treatment	Ist Crep (maize)	2nd Crop (groundaut)	3rd Crop (maize)	4th Crop (groundnut)	5th Crop (muize)
			Soil depth 0-15 cm		
10.00	9.48 b (2.99)	19,15 a (5,15)	22,20 b (4,75)	21.36 b (3.80)	40,34 b (4,00)
172	8.85 b (2.67)	34,66 a (11,45)	21.53 b (6.50)	22.20 b (5.05)	45.18 b (12.57)
73	26.54 a (2.70)	40.94 a (7.35)	56.58 a (7.55)	(M.87 a (14.35)	151.84 a (10.08)
	ħ.	1	Soil depth 15-30 cm		
era Jun	5.49 a (1.60)	4.58 b (0.65)	7.48 b (1.75)	6.97 b (0.80)	8,09 b (2.05)
27	5.39 a (0.91)	4.25 b (5.05)	4.57 b (0.80)	8.41 b (2.50)	14.16 b (1.59)
13	0.99 a (1.49)	10.22 a (1.20)	16.77 a (2.60)	20.65 a (3.60)	30,32 a (3.57)
	f.		Soil depth 30-50 cm		
erm Lu-	4.49 a (0.00)	1.53 a (0.15)	2.24 b (0.05)	4.25 b (0.35)	4,46 a (0.39)
7.5	4,49 a (0.00)	2.44 a (0.80)	2,04 to (0,55)	4.08 b (0.95)	9.63 a (1.65)
13	7,49 a (2,37)	2.99 a (0.90)	8.02 a (1.80)	8.60 a (0.65)	11.57 a (3.66)