

UNIVERSITY OF ESWATINI

Final Examination Paper

Programme: Bachelor of Science in Agronomy, Year 4

Course Code:

CPR 402

Title of Paper:

Soil Management

Time Allowed:

2 hours

Instructions:

Answer FOUR questions. Question 1

is compulsory.

Do Not Open This Question until Permission has been granted by the Invigilator

Question 1:

Data presented below (Table 1) showed irrigation water from five major rivers in Swaziland: (i) Komati River, (ii) Mlumati River, (iii) Mbuluzi River, (iv) Tembe River, and (v) Lusutfu River.

Table 1: Irrigation water quality of selected rivers in Swaziland

S/No	Rivers	Ca ²⁺	Mg ²⁺	K ⁺	Na+	HCO ₃ ²⁻	CO ₃ ²⁻	SAR	SSP	RSC	IVD
		meq/l					SAIC	-%-		KR	
1 .	Komati River	0.15	0.52	1.08	10.87	10.65	10.33	A-C	-70-	Meq/l	
2	Komati River	0.17	0.62	1.09	11.08	10.78	10.53				
3	Mlumati River	0.15	0.58	1.10	10.82	10.70	10.31				
4	Mlumati River	0.14	0.58	1.12	11.26	10.70	10.43				
5	Mlumati River	0.14	0.54	1.11	10.87	10.23					
6	Mbuluzi River	0.15	0.56	1.09	10.87	10.44	10.19				
7	Mbuluzi River	0.15	0.54	1.08	11.00		10.42				
8	Mbuluzi River	0.15	0.59	1.10		10.79	10.50				
9	Tembe River	0.15	0.58		11.22	10.64	10.33				
10	Lusutfu River			1.08	11.17	10.66	10.33				No.
	SAR= sodium abanda:	0.14	0.58	1.10	11.04	10.69	10.33				

SAR= sodium absorbtion ratio; SSP= sodium soluble percentage; RSC= residual sodium carbonate; and KR= Kelly ratio.

- a. Calculate the following:
- i. Sodium Absorption Ratio (SAR)
- ii. Sodium Soluble Percentage (SSP)
- iii. Residual Sodium Carbonates (RC) and
- iv. Kelly's ratio
- b. From the calculated values, which of waters would be suitable for irrigation of 100 ha of sugarcane plantation? Give reasons for your answers.

[25 Marks]

Question 2:

- a. Distinguish between natural and technical soil classification with one example each.
- b. Mention two importance of using technical soil classification to manage soils.
- c. Write short notes on the following:
- i. Land Capability Classificationii. Land Suitability Evaluation
- ii. Land Suitability Evaluationiii. Fertility Capability Classification
- iv. Parametric Systems of Evaluation

[25 Marks]

Question 3:

Most of the soils in Swaziland are classified as Oxisols or Ferralsols.

- a. Itemize and discuss factors that are responsible for the formation of this Soil Order.
- b. What are the main limitations of this Soil Order and how can you manage or ameliorate them for maize production in Luyengo Campus?

[25 Marks]

Question 4:

- a. What are the causes of soil salinity and soil sodicity?
- b. State <u>five visual symptoms</u> that will show that a given soil has excessive salts (i.e. saline, saline-sodic, and sodic soils).
- c. Data presented in Table 2 showed a soil profile data from the RSSC, Swaziland. Calculate the following: (i) Sodium Absorption Ratio (SAR) and (ii) Effective Cation Exchange Capacity (ECEC) of the four horizons. Present your data in a tabular form.
- d. From the data, which soil properties will indicate that this soil is sodic? How will you manage these problems? Explain.

Table 2: Extractable cations, and cation exchange capacity of an S-set soil, Mhlume, Swaziland

Horizon	Depth (cm)	Na ⁺	Mg ⁺⁺	K ⁺	Ca ⁺⁺	CEC	SAR	ECEC
			(meg/l	-cmol/kg			
Ap Bt1	0-28	20.80	0.80	2.31	0.62	12.30	moqri	-CHIOI/Kg
	28-55	19.10	1.60	1.13	0.66	11.30		-
Bt2	55-90	17.30	0.50	0.64	0.75	10.20		-
Bt3	90-115	18.0	0.70	0.54	0.97	15.20		

CEC = caution exchange capacity; SAR= Sodium Absorption Ratio

[25 Marks]

Question 5:

- a. What is the difference between soil acidity and soil alkalinity?
- b. Describe briefly how you will determine soil pH in water from a soil sample.
- c. Itemize and briefly discuss five causes of soil acidity in soils of Swaziland.
- d. Discuss the effect of soil pH on (i) soil nutrients and (ii) soil microbiology.

[25 Marks]

--- END OF PAPER----