UNIVERSITY OF SWAZILAND FINAL EXAMINATION – 2017, DECEMBER

TITLE OF PAPER

Chemistry

COURSE NUMBER

CPR 103

TIME

Three Hours

INSTRUCTIONS

:

1. Answer all questions in Section A (Total 50 marks)

2. Answer any two questions in Section B (each question is 25 marks)

NB:

Non-programmable electronic calculators may be used

A periodic table and answer sheet (for Section A) are attached

This Examination Paper Contains Twelve Printed Pages Including This Page

You are not supposed to open the paper until permission to do so has been granted by the Chief Invigilator.

Section A

1) What is the physical volume?	al state in which matter l	has no specific	shape but do	es have a specific
A) gas	B) solid	C) liquid	D) salts	E) ice
2) Which one of the for A) S, sodium D) N, neon	ollowing has the elemen B) Tn, tin E) B, bromine	nt name and sy C) Fe,		y matched?
3) Which one of the fortechniques such as filt A) heterogeneous mix D) elements	ture I	separated into 3) compounds 3) solutions		ts by simple mogeneous mixture
4) Gases and liquids siA) compressibilityD) indefinite shape	hare the property of B) definite volu E) definite shap		C) incompres	sibility
5) Which one of the for A) 38 °C D) none of the above	ollowing is the highest to B) 96 °F E) the freezing I	C) 302		
g sample of osmium?	ity of 22.6 g/cm ³ . Wha B) 1.04 C) 493	t volume (in c D) 2.03		occupied by a 21.8 E) 2.03 × 10 ³
C) how close a measur D) how close a measur	red number is to zero red number is to the calcored number is to other many red number is to the true red number is to infinity	neasured numb e value	pers	
8) In which one of the A) 100.0	following numbers are g	none of the ze C) 0.0100	ros significan D) 1.003450	t? E) 0.00001
9) Round the number (A) 0.09	0.08535 to two significa B) 0.086	nt figures.	D) 0.0	85 E) 0.08535
10) There are atom of $^{132}_{54}$ Xe.	electrons,	protons, a	nd	neutrons in an
A) 132, 132, 54 D) 54, 54, 78	B) 54, 54, 132 E) 78, 78, 132		C) 78, 78, 54	
11) The nucleus of an aA) protonsD) subatomic particles	atom does not contain _ B) protons or ne E) electrons	utrons	C) neu	trons
12) In the symbol show 13 C	n below, x =	<u>.</u>		

13) The average atomic weight of copper, which has two naturally occurring isotopes, is 63: One of the isotopes has an atomic weight of 62.9 amu and constitutes 69.1% of the copper isotopes. The other isotope has an abundance of 30.9%. The atomic weight (amu) of the second isotope is amu. A) 63.2	A) 7 B) 13 determine	C) 12	D) 6	E) not enough info	ormation to
A) Elements	isotopes. The other i	nas an atomic weig sotope has an abur	ght of 62.9 amu ar	nd constitutes 69.1% o	f the copper
A) with similar atomic masses C) in the same period of the periodic table E) in the same period of the periodic table D) on opposite sides of the periodic table 15) An element that appears in the lower left corner of the periodic table is A) either a metal or metalloid B) definitely a metal C) either a metal or metalloid B) definitely a non-metal E) definitely a metalloid 16) A molecular formula always indicates A) how many of each atom are in a molecule B) the simplest whole-number ratio of different atoms in a compound C) which atoms are attached to which in a molecule D) the isotope of each element in a compound E) the geometry of a molecule 17) Which one of the following substances is the product of this combination reaction? Al (s) + I ₂ (s) → A) AlI ₂ B) AlI C) AlI ₃ D) Al ₂ I ₃ E) Al ₃ I ₂ 18) The formula weight of potassium dichromate (K ₂ Cr ₂ O ₇) is amu. A) 107.09 B) 255.08 C) 242.18 D) 294.18 E) 333.08 19) The mass % of H in methane (CH ₄) is A) 25.13 B) 4.032 C) 74.87 D) 92.26 E) 7.743 20) Calculate the percentage by mass of lead in Pb(NO ₃) ₂ . A) 38.6 B) 44.5 C) 62.6 D) 65.3 E) 71.2 21) A sample of CH ₄ O with a mass of 32.0 g contains molecules of CH ₄ O. A) 5.32 × 10-23 B) 1.00 C) 1.88 × 10 ² 2 D) 6.02 × 10 ² 3 E) 32.0 22) The balanced molecular equation for complete neutralization of H ₂ SO ₄ by KOH in aqueous solution is	A) 63.2	B) 63.8	C) 64.1	D) 64.8	E) 28.1
A) ether a metal or metalloid E) definitely a metalloid B) definitely a metal C) either a metalloid or a non-metal E) definitely a metalloid C) either a metalloid B) definitely a non-metal E) definitely a metalloid C) definitely a non-metal E) definitely a metalloid C) definitely a non-metal C) definitely a non-metal E) definitely a metalloid C) definitely a non-metal E) definitely a metalloid C) definitely a non-metal E) definitely a non-metal D) definitely a non-metal E) definitely a non-metal E) definitely a non-metal D) definitely a non-metal E) definitely a non-metal E) definitely a non-metal D) definitely a non-metal E) definitely a non-metal E) definitely a non-metal D) definitely a non-metal E) definitely a non-metal E) definitely a non-metal D) definitely a non-metal E) definitely a non-metal E) definitely a non-metal D) definitely a non-metal E) definitely a non-metal element in a compound E) definitely a non-metal element in a compound E) definitely a non-meta	C) in the same period	nical symbols d of the periodic ta	B) with simulation B) on oppo	ilar atomic masses	lic table
A) how many of each atom are in a molecule B) the simplest whole-number ratio of different atoms in a compound C) which atoms are attached to which in a molecule D) the isotope of each element in a compound E) the geometry of a molecule 17) Which one of the following substances is the product of this combination reaction? Al (s) + I ₂ (s) A) AlI ₂ B) AlI C) AlI ₃ D) Al ₂ I ₃ E) Al ₃ I ₂ 18) The formula weight of potassium dichromate (K ₂ Cr ₂ O ₇) is amu. A) 107.09 B) 255.08 C) 242.18 D) 294.18 E) 333.08 19) The mass % of H in methane (CH ₄) is A) 25.13 B) 4.032 C) 74.87 D) 92.26 E) 7.743 20) Calculate the percentage by mass of lead in Pb(NO ₃) ₂ . A) 38.6 B) 44.5 C) 62.6 D) 65.3 E) 71.2 21) A sample of CH ₄ O with a mass of 32.0 g contains molecules of CH ₄ O. A) 5.32 × 10 ⁻²³ B) 1.00 C) 1.88 × 10 ²² D) 6.02 × 10 ²³ E) 32.0 22) The balanced molecular equation for complete neutralization of H ₂ SO ₄ by KOH in aqueous solution is	C) either a metalloid	or a non-metal	B) c	definitely a metal	
Al (s) + I ₂ (s) \rightarrow	A) how many of each B) the simplest whole C) which atoms are a D) the isotope of each	h atom are in a mo e-number ratio of attached to which i h element in a con	lecule different atoms in n a molecule	a compound	
A) AlI ₂ B) AlI C) AlI ₃ D) Al ₂ I ₃ E) Al ₃ I ₂ 18) The formula weight of potassium dichromate ($K_2Cr_2O_7$) is amu. A) 107.09 B) 255.08 C) 242.18 D) 294.18 E) 333.08 19) The mass % of H in methane (CH ₄) is A) 25.13 B) 4.032 C) 74.87 D) 92.26 E) 7.743 20) Calculate the percentage by mass of lead in Pb(NO ₃) ₂ . A) 38.6 B) 44.5 C) 62.6 D) 65.3 E) 71.2 21) A sample of CH ₄ O with a mass of 32.0 g contains molecules of CH ₄ O. A) 5.32 × 10-23 B) 1.00 C) 1.88 × 10 ²² D) 6.02 × 10 ²³ E) 32.0 22) The balanced molecular equation for complete neutralization of H ₂ SO ₄ by KOH in aqueous solution is	17) Which one of the	following substar	nces is the product	t of this combination re	eaction?
18) The formula weight of potassium dichromate (K ₂ Cr ₂ O ₇) is amu. A) 107.09 B) 255.08 C) 242.18 D) 294.18 E) 333.08 19) The mass % of H in methane (CH ₄) is A) 25.13 B) 4.032 C) 74.87 D) 92.26 E) 7.743 20) Calculate the percentage by mass of lead in Pb(NO ₃) ₂ . A) 38.6 B) 44.5 C) 62.6 D) 65.3 E) 71.2 21) A sample of CH ₄ O with a mass of 32.0 g contains molecules of CH ₄ O. A) 5.32 × 10-23 B) 1.00 C) 1.88 × 10 ²² D) 6.02 × 10 ²³ E) 32.0 22) The balanced molecular equation for complete neutralization of H ₂ SO ₄ by KOH in aqueous solution is	$Al(s) + I_2($	s)			
A) 107.09 B) 255.08 C) 242.18 D) 294.18 E) 333.08 19) The mass % of H in methane (CH ₄) is A) 25.13 B) 4.032 C) 74.87 D) 92.26 E) 7.743 20) Calculate the percentage by mass of lead in Pb(NO ₃) ₂ . A) 38.6 B) 44.5 C) 62.6 D) 65.3 E) 71.2 21) A sample of CH ₄ O with a mass of 32.0 g contains molecules of CH ₄ O. A) 5.32 × 10 ⁻²³ B) 1.00 C) 1.88 × 10 ²² D) 6.02 × 10 ²³ E) 32.0 22) The balanced molecular equation for complete neutralization of H ₂ SO ₄ by KOH in aqueous solution is	A) AlI ₂	B) All C) AlI ₃	D) Al ₂ I ₃ E) A	Al ₃ I ₂
A) 107.09 B) 255.08 C) 242.18 D) 294.18 E) 333.08 19) The mass % of H in methane (CH ₄) is A) 25.13 B) 4.032 C) 74.87 D) 92.26 E) 7.743 20) Calculate the percentage by mass of lead in Pb(NO ₃) ₂ . A) 38.6 B) 44.5 C) 62.6 D) 65.3 E) 71.2 21) A sample of CH ₄ O with a mass of 32.0 g contains molecules of CH ₄ O. A) 5.32 × 10 ⁻²³ B) 1.00 C) 1.88 × 10 ²² D) 6.02 × 10 ²³ E) 32.0 22) The balanced molecular equation for complete neutralization of H ₂ SO ₄ by KOH in aqueous solution is	18) The formula weig	ght of potassium d	ichromate (K2Cr2	007) is a	mu
A) 25.13 B) 4.032 C) 74.87 D) 92.26 E) 7.743 20) Calculate the percentage by mass of lead in Pb(NO ₃) ₂ . A) 38.6 B) 44.5 C) 62.6 D) 65.3 E) 71.2 21) A sample of CH ₄ O with a mass of 32.0 g contains molecules of CH ₄ O. A) 5.32 × 10 ⁻²³ B) 1.00 C) 1.88 × 10 ²² D) 6.02 × 10 ²³ E) 32.0 22) The balanced molecular equation for complete neutralization of H ₂ SO ₄ by KOH in aqueous solution is	A) 107.09	B) 255.08	C) 242.18		
A) 25.13 B) 4.032 C) 74.87 D) 92.26 E) 7.743 20) Calculate the percentage by mass of lead in Pb(NO ₃) ₂ . A) 38.6 B) 44.5 C) 62.6 D) 65.3 E) 71.2 21) A sample of CH ₄ O with a mass of 32.0 g contains molecules of CH ₄ O. A) 5.32 × 10 ⁻²³ B) 1.00 C) 1.88 × 10 ²² D) 6.02 × 10 ²³ E) 32.0 22) The balanced molecular equation for complete neutralization of H ₂ SO ₄ by KOH in aqueous solution is	19) The mass % of H	in methane (CH4)) is		
A) 38.6 B) 44.5 C) 62.6 D) 65.3 E) 71.2 21) A sample of CH4O with a mass of 32.0 g contains molecules of CH4O. A) 5.32 × 10-23 B) 1.00 C) 1.88 × 1022 D) 6.02 × 10 ²³ E) 32.0 22) The balanced molecular equation for complete neutralization of H ₂ SO ₄ by KOH in aqueous solution is	A) 25.13	B) 4.032	C) 74.87	D) 92.26	E) 7.743
A) 38.6 B) 44.5 C) 62.6 D) 65.3 E) 71.2 21) A sample of CH4O with a mass of 32.0 g contains molecules of CH4O. A) 5.32 × 10-23 B) 1.00 C) 1.88 × 1022 D) 6.02 × 10 ²³ E) 32.0 22) The balanced molecular equation for complete neutralization of H ₂ SO ₄ by KOH in aqueous solution is	20) Calculate the per-	centage by mass of	f lead in Pb(NO3)	2.	
A) 5.32×10^{-23} B) 1.00 C) 1.88×10^{22} D) 6.02×10^{23} E) 32.0 E) 32.0 22) The balanced molecular equation for complete neutralization of H_2SO_4 by KOH in aqueous solution is	A) 38.6	B) 44.5			E) 71.2
A) 5.32×10^{-23} B) 1.00 C) 1.88×10^{22} D) 6.02×10^{23} E) 32.0 E) 32.0 22) The balanced molecular equation for complete neutralization of H_2SO_4 by KOH in aqueous solution is	21) A sample of CH4	O with a mass of 3	32.0 g contains	molecules o	of CH4O
22) The balanced molecular equation for complete neutralization of H ₂ SO ₄ by KOH in aqueous solution is	A) 5.32×10^{-23}				. 01140.
aqueous solution is	D) 6.02×10^{23}	E) 32.0			
	aqueous solution is _			lization of H ₂ SO ₄ by	KOH in
B) $2H^{+}$ (aq) + 2KOH (aq) \rightarrow 2 H ₂ O (l) + 2K ⁺ (aq)					

```
C) H_2SO_4 (aq) + 2OH^- (aq) \rightarrow 2H_2O(1) + SO_4^{2-} (aq)
 D) H_2SO_4 (aq) + 2KOH (aq) \rightarrow 2 H_2O (1) + K_2SO_4 (s)
 E) H_2SO_4 (aq) + 2KOH (aq) \rightarrow 2 H_2O (l) + K_2SO_4 (aq)
 23) Which combination will produce a precipitate?
 A) Pb(NO<sub>3</sub>)<sub>2</sub> (aq) and HCl (aq)
                                                   B) Cu(NO<sub>3</sub>)<sub>2</sub> (aq) and KC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> (aq)
 C) KOH (aq) and HNO3 (aq)
                                                    D) AgC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> (aq) and HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> (aq)
 E) NaOH (aq) and Sr(NO<sub>3</sub>)<sub>2</sub> (aq)
24) The net ionic equation for the reaction between aqueous nitric acid and aqueous sodium
 hydroxide is
A) H^+ (aq) + HNO<sub>3</sub> (aq) + 2OH<sup>-</sup> (aq) \rightarrow 2 H<sub>2</sub>O (l) + NO<sub>3</sub><sup>-</sup> (aq)
 B) HNO<sub>3</sub> (aq) + NaOH (aq) \rightarrow NaNO<sub>3</sub> (aq) + H<sub>2</sub>O (l)
 C) H^+ (aq) + OH- (aq) \rightarrow H<sub>2</sub>O (1)
D) HNO<sub>3</sub> (aq) + OH- (aq) \rightarrow NO<sub>3</sub>- (aq) + H<sub>2</sub>O (l)
E) H^+ (aq) + Na^+ (aq) + OH^- (aq) \rightarrow H_2O (l) + Na^+ (aq)
25) Which hydroxides are weak bases?
A) KOH, Ba(OH)2
                                           B) Sr(OH)<sub>2</sub>, KOH, NaOH, Ba(OH)<sub>2</sub>
C) KOH, NaOH
                                           D) KOH, NaOH, Ba(OH)2
E) None of these is a weak base.
26) In which species does nitrogen have the highest oxidation number?
A) N2
                 B) NH<sub>3</sub>
                                           C) HNO2
                                                                     D) NO2-
                                                                                      E) NaNO3
27) Sodium does not occur in nature as Na (s) because
A) it is easily reduced to Na-
                                                            B) it is easily oxidized to Na<sup>+</sup>
C) it reacts with water with great difficulty
                                                            D) it is easily replaced by silver in its
ores
E) it undergoes a disproportionation reaction to Na- and Na+
28) Which of the following is an oxidation-reduction reaction?
A) Cu(s) + 2AgNO_3(aq) \rightarrow 2Ag(s) + Cu(NO_3)_2(aq)
B) HCl (aq) + NaOH (aq) \rightarrow H<sub>2</sub>O (l) + NaCl (aq)
C) AgNO_3 (aq) + HCl (aq) \rightarrow AgCl (s) + HNO_3 (aq)
D) Ba(C_2H_3O_2)_2 (aq) + Na_2SO_4 (aq) \rightarrow BaSO_4 (s) + 2NaC_2H_3O_2 (aq)
E) H_2CO_3 (aq) + Ca(NO_3)_2 (aq) \rightarrow 2HNO_3 (aq) + CaCO_3 (s)
29) A tenfold dilution of a sample solution can be obtained by taking
A) 1 part sample and 9 parts solvent
                                                  B) 1 part sample and 10 parts solvent
C) 9 parts sample and 1 part solvent
                                                   D) 10 parts sample and 1 part solvent
E) 99 parts sample and 1 part solvent
30) What mass (g) of potassium chloride is contained in 430.0 mL of a potassium chloride
solution that has a chloride ion concentration of 0.193 M?
A) 0.0643
                         B) 0.0830
                                                   C) 12.37
                                                                    D) 0.386
                                                                                      E) 6.19
```

31) The point in a titr	ation	at which the indicator changes is called the
A) setpoint	B) 1	ndicator point C) standard point
D) endpoint	E) v	olumetric point
	HII	
32) is an	oxic	lation reaction.
A) Ice melting in a so		
B) Table salt dissolving	ng in	water for cooking vegetables
C) Rusting of iron		
D) The reaction of so	dium	chloride with lead nitrate to form lead chloride and sodium nitrate
E) Neutralization of I	ICI b	y NaOH
	8	
33) Which one of the	follo	wing is an incorrect subshell notation?
A) 4f B) 2d		C) 3s D) 2p E) 3d
34) Which electron co	onfig	uration represents a violation of the Pauli exclusion principle?
1s 2s	_	2p 1s 2s 2p
1 1		$\uparrow \uparrow $
A) [[[] []	L	B) [1] [1]
1s 2s		2p 1s 2s 2p
\bigcirc $\uparrow\downarrow$ $\uparrow\downarrow$	1	
C) [14] [14] [$\uparrow\downarrow$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1s 2s		2p
E)		
2)		
35) Which one of the	fallo	Ving configuration 1
A) $1s^22s^22p^2$	Di	wing configurations depicts an excited oxygen atom?
0 0 1	_	$s^2 2s^2 2p^2 3s^2$ C) $1s^2 2s^2 2p^1$
D) $1s^22s^22p^4$	E) [I	Te]2s ² 2p ⁴
26) WILL 1		
A) Pd and Pt	its ha	we the same ground-state electron configuration?
A) Fu allu Ft	B) C	u and Ag C) Fe and Cu
D) Cl and Ar	E) N	o two elements have the same ground-state electron configuration.
A) down a manus gen	erall	y increases as we move
R) up a group and from	rom	right to left across a period
C) down a group and from	nien	to right across a period
D) up a group and from	rom	left to right across a period
E) down a group; the n	n rigi	nt to left across a period
E) down a group; the p	erioc	position has no effect
38) Which equation co	rrect	V represents the first ' ' ' '
A) Co (a) C + (iteet	y represents the <u>first</u> ionization of calcium?
A) $Ca(g) \rightarrow Ca^+(g)$		B) Ca (g) \rightarrow Ca ⁻ (g) + e ⁻
C) Ca (g) + $e^- \rightarrow Ca$		D) $Ca^{-}(g) \rightarrow Ca(g) + e^{-}$
E) $Ca^+(g) + e^- \rightarrow Ca$	a (g)	(6)
	(8)	
00) 011		

39) Chlorine is much more apt to exist as an anion than is sodium. This is because

A) chlorine is bigger than sodium
B) chlorine has a greater ionization energy than sodium does

- C) chlorine has a greater electron affinity than sodium does
- D) chlorine is a gas and sodium is a solid
- E) chlorine is more metallic than sodium
- 40) Of the ions below, only has a noble gas electron configuration.
- A) S3-
- B) 0^{2+}
- C) I+
- D) K-
- E) CI-

- 41) Pentane has
- A) 0 B) 1
- structural isomers. C) 2 D) 3
- E) 4
- 42) The structure of 2,3-dimethylheptane is
- CH₃ CH₃ CH2-CH2-CH2-CH2
 - H₃C CH₃ CH₃
- H₃C CH₃ C) CH₃

CH₃

- B) CH2-C-CH-CH2 D) H₃C- C- CH₃
- CH₃ CH₃CH₂CH₂CH₂- CH- CH- CH₃ | | CH₃
- 43) Alcohols are hydrocarbon derivatives in which one or more hydrogens have been replaced by a hydroxyl functional group. is the general formula of an alcohol.
- A) R-O-R

E)

- B) R-CO-R
- C) R-CO-OH

D) R-OH

- E) R-CO-H
- 44) Which one of the following compounds is an isomer of CH₃CH₂CH₂CH₂OH?

CH₃CH₂CH₂C C)

CH3CH2CHCH3 OH D)

- E) CH₃OH
- 45) Which of the following compounds do not contain an sp³ hybridized oxygen atom?
- A) ketones
- B) alcohols
- C) ethers

D) esters

- E) water
- 46) Which structure below represents an amine?

CH₃CH₂C
$$\rightarrow$$
 CH₂CH₃

CH₃CH₂C \rightarrow

H

CH₃CH₂C \rightarrow
 \rightarrow

NH₂

- 47) Which structure below represents an ether?
- A) $CH_3CH_2 \longrightarrow O \longrightarrow CH_2CH_3$ B) CH_3CH_2C C) CH_3CH_2C D) CH_3CH_2C CH₃
- 48) The compound below is an____

H-C=CH-CH3

A) alkyne

B) alkene

C) alkane

- D) aromatic compound
- E) olefin
- 49) _____ could be the formula of an alkene.
- A) C3H8

B) C₃H₆

C) C₆H₆

- D) C₁₇H₃₆
- E) CH₈
- 50) The general formula of a carboxylic acid is _____
- A) R-O-R'
- B) R-CO-R'
- C) R-COOH

D) R-H

E) R-CO-OR'

Section B

Question 1

- a) What mass (g) of AgBr is formed when 35.5 mL of 0.184 M AgN03 is treated with an excess of aqueous hydrobromic acid? [5] (15)
- b) What is the empirical formula of a compound that contains 29% Na, 41 % S, and 30% 0 by mass?

Question 2

a) b)	solution of Al(N0 ₃) ₃ when solid Al(OH)3 is mixed with aqueous nitric acid.	[10 (5)
c)		(3)
	i) NiF ₂ ·4H ₂ 0	
	ii) Hg ₂ Cl ₂	
	iii) HCl	
	iv) KOH	
	v) HIO(aq)	(10)
Quest	tion 3	
a)	Name any six classes of organic compounds.	(6)
b)	Give the functional group and a named example for each of the classes of compoun	ds
	named above in (a).	(12)
c)	Draw all the structural isomers of pentene, C ₄ H ₁₀ , that have an hydrocarbon chain.	(4)
d)	Draw the structure of 5-chloro-3-methyl-octanoic acid	(3)

UNIVERSITY OF SWAZILAND Department of Chemistry

2 He 4.0026	10 Ne	20.179	18 Ar	36 Kr 836	Xe Xe	86 Rn	
	6	18.998	7 CI	35 Br	SS I		
	8		N S 20 25	Se Se	Te	84 Po	
	Z		15 P	33 AS	Sb	83 Bi 208.98	
	ر پ		Si 28 080	32	S0 S	82 Pb	
	s B	10.811	AI 26 987	31 Ga	49 In	81 T1 204.38	
				30 Zn 65.39		0	
	eight			29 Cu 63.546	Ag 107.87	Au 196.97	
	Atomic Weight			28 Ni 58.69	46 Pd	78 Pt 195.08	
He	4.0026	,		27 C0 58.933	45 Rh	77 Ir 192.22	
ber 2				26 Fe 55.847	44 Ru	76 Os 190.2	
Atomic Number				25 Mn 54.938	43 Tc (98)	75 Re 186.2	
A				24 Cr 51.996	42 Mo 95.94	74 W 183.85	
				23 V 50.942	11 Nb 92.906	T3 Ta 180.95	
				Ti T7.88	40 Zr 91.224	77 Hf 178.49	
				21 Sc +4.956	39 Y 88.906	57 La 138.91	89 Ac 227.03
	Be	9.0122	Mg 24.305	20 Ca 40.078	38 Sr 87.62	56 Ba 137.33	88 Ra 226.03
1 H 1.0079	Ţ.	0.941	Na 22.990	19 K 39.098	37 Rb 85.47	Cs 132.91	87 8 Fr (223)

	1 8
71 Lu 174.97	
Yb 173.04	101
69 Tm 168.93	101 Md (258)
68 68 6 167.26	Fm (25)
Ho 164.93	99 Es
6 Dy 162.50	98 Cf (251)
Tb 158.93	BK
64 Gd 157.25	Cm 95
3 Eu	Am (234)
Sm 150.36	Pu (2++)
Pm 146.92	Np 237.05
Nd 144.24	92 U 238.03
Pr 140.91	Pa 231.04
58 Ce 140.12	90 Th 232.04