

UNIVERSITY OF SWAZILAND

MAIN EXAMINATION PAPER

PROGRAMME:

BACHELOR OF SCIENCE IN AGRONOMY, YEAR 4

COURSE CODE:

CP 406

TITLE OF PAPER:

SOIL MANAGEMENT

TIME ALLOWED:

TWO (2) HOURS

INSTRUCTIONS:

ANSWER ALL QUESTIONS

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

142

QUESTION 1

Data shown in Figure 1 showed the effect of pH on forms of phosphorus in any given soil.

- a. At what pH is element P most available in the soil? Give reasons for your answers.
- b. From the data presented, what are the major source(s) of P in the soils?
- c. List and discuss at least five factors that will affect P forms in these soils
- d. Draw a well labelled diagram of how phosphorus nutrient element moves within the soil solum. (25Marks).

Question 2:

- a. How will cation exchange capacity (CEC), soil texture, exchangeable acidity, and soil organic matter affect lime requirements?
- b. Briefly explain how the soil reaction (pH) affects the availability of N, Ca, Mg, Fe, Mn & Zn in soils.
- c. Using chemical equations, how will liming materials increase soil pH.
- d. Explain how your will manage these soils if they have variable charges.
- e. Why does nitrogen fertilization with NH₃ acidify soil?
- f. In most soils, deep rooting is more beneficial to a plant's N nutrition than to its P nutrition. Give four reasons why this is so?

(25 Marks)

QUESTIONS 3

Soil samples were collected randomly from the soil farm of an area of 1000 ha using these factors- slope difference and differences in vegetation. These soil samples were bulked, labelled (inside & outside) and shipped to the laboratory. In the laboratory, these were dried and sieved. The samples were used for determination of the soil pH in water and CaCl₂.

- a. What sieve size will be most appropriate for the determination of the soil pH in water and CaCl₂?
- b. Enumerate a step-wise procedure for determining the pH in water and CaCl₂.
- c. Define both active and reserve acidity. Is there any relationship between these two variables?
- d. What is liming? Itemize and discuss four factors to be considered in determining a liming program (25 marks).

QUESTION 4

- a. Define the following terms: (i) land evaluation, (ii) land quality, (iii) land use requirements and (iv) land utilization types.
- b. In Tables 1-3, data are provided of four soil types/pedons in Luyengo Campus of the University of Swaziland. The mean available Bray-1-P were 3-5 mg/kg; 9-11 mg/kg; 7-10 mg/kg and > 12 mg/kg for profiles I, II, III & IV respectively. Develop criteria and ratings of land use requirements for growing maize (Zea mays L.) using the following land qualities: climate, slope, fertility (physical and chemical), & wetness.
- c. Use the table constructed in question 4b to evaluate the land (i.e. **Profiles I & II**) for the cultivation of maize (Zea mays L.).
- d. Estimate the organic matter (%) and Delta pH in Profiles III & IV. Present your answers in a Table. State the importance of Delta pH in managing these soils for maize production.
- e. Identify the major constraints of these soils (i.e. **Profiles I & II**) for maize cultivation from all these **soil types/pedons** and how will you ameliorate these constraints for a successful cultivation of maize.

(25 marks).

Table 1: Description of the sampling sites, Luyengo, Campus

Profile No	Land Use	Parent Materials	Age	Elevation (m)	Physiographic Unit	Slope (%)	
I	Forest	Tertiary Rocks	Tertiary	41	Upper slope	4-15	
II	Forest	Tertiary Rocks	Tertiary	39	Upper slope	1-2	
Ш	Forest	Sediments	Young	20	Mid-slope	4	
IV	Forest	Sediments	Sediments	11	Valley Bottom	2	

Table 2: Physical properties of the sites, Luyengo, Campus

Horizons	Depth (cm)	Sand	Silt	Clay	Textural classes	Bulk Density (g/cm ³)									
		Profile I (Typic Haplustults)													
A1	0-12	61	19	20	SCL	1.25									
E	12-37	58	20	22	SCL	1.28									
Bt	37-53	56	21	28	SCL	1.28									
C	53-90	55	21	28	SCL	1.32									
		Profile II (Typic Haplustults													
A1	015	57	15	28	SCL	1.21									
E	15-45	56	13	31	SCL	1.23									
Bt	45-72	50	14	36	SCL	1.23									
C	72-100	50	16	34	SCL	1.27									
	Profile III (Typic Dystrochrepts)														
A1	0-16	73	10	17	SL	1.18									
Bw1	16-48	71	8	21	SCL	1.20									
Bw2	48-99	70	7	23	SCL	1.22									
		Pro	ofile IV (Typi	ic Udifulven	ts										
A1	0-14	38	30	32	CL	1.16									
C1	14-31	48	17	35	SCL	1.15									
C2	31-72	52	18	30	SCL	1.19									
C3	72-85	52	13	35	SC	1.21									

SCL= Sandy Clay Loam; SL= Sandy Loam; CL= Clay Loam; SC= Sandy Clay

Table 3: Chemical properties of selected pedons in Luyengo, Campus

	\top		-	_			-		_	-	_		_	-	3100		1977		_			
Al. Sat	6.1		12.20	12.29	17.31	24.03	7.01		11.30	14.39	18.54	19.94		10 01	13.07	16.21	10.01	733	10.10	12.12	13.49	16.85
Exch.			1 10	1.10	51.1	1.15	1.43		0.92	86.0	1.10	1.13		080	0.07	1 05	7.00	0.74	10.74	0.80	0.93	1.01
ECEC	-Cmol/ko-	0	4.49	2 64	7 87	2.66	7.00		4.78	4.10	3.29	3.11		44	3.82	3 19	22.5	3 00	20.0	17.7	71.7	1.96
Exch. Al	Cm		090	0.00	0.65	0.66	20.0		0.54	0.59	0.61	0.62		0.48	0 582	0.55		0.41	0.44	0.44	0.40	0.47
CEC			11 44	0 17	0.37	11.9	\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.	0 11	11.8	10.17	9.54	12.20		10.8	196	9.3		14 50				10.41
PBS (%)		tults)	205	27.5	18.4	11.8	etulte	Stutte	52.1	30.7	23.0	16.2	ochrents)	32.50	29.80	23.0	vents)	33 40	31.7	20.00	21.0	8.17
Na		- Profile I (Typic Haplustults) -	0 28	0.17	0.06	0.07	Profile II (Tynic Hanlustults	O 22	0.32	0.26	0.22	0.19	ic Dystr	0.30	0.28	0.22	ic Udifu	0.57	0.35	000	0.00	0.10
M	Cmol/kg	I (Typic	0 47	032	0.32	0.17	II (Tyn)	0.57	0.33	0.44	0.21	0.30	Profile III (Typic Dystrochrepts)	0.45	0.39	0.28	Profile IV (Typic Udifulvents)-	0.65	0.35	0.33	000	0.39
Mg	Cm	Profile	86.0	190	0.27	0.19	- Profile	1 10	1.12	0.89	0.33	0.29	Profile	1.10	0.57	0.34	- Profile	1.46	0.54	0.58	0000	0.30
Ca			1.65	135	1.23	86.0		1 90	1.09	1.53	1.43	1.20		1.66	1.64	1.30		2.17	1 97	1 64	1 40	74.1
pHCaCl ₂			3.96	3.88	3.84	3.57		115	CI.+	4.12	4.10	3.82		4.23	4.59	4.13		4.90			1 36	4.30
pHw			5.10	4.95	4.86	4.44		5 16	2.10	5.11	4.91	4.68		5.17	5.12	5.12		5.52	5.23			
38			1.15	1.10	0.41	0.26		1 54	101	1.51	0.54	0.33		1.61	1.36	0.41		1.73	1.45			
Depth			0-12	12-37	37-53	53-90		0-15	15 15	13-43	45-72	72-100		91-0	16-48	48-99		0-14	14-31		T	
Horizon			Al	田	Bt	C		A1		2 6	Bt	2		A1	BwI	Bw2		A1	CI	C2	C3	3

pHw= pH-water; PBS = Base saturation percentage; CEC= cation exchange capacity; ECEC= Effective Cation Exchange Capacity; Al. Sat=

45

Aluminium saturation; OC= Organic carbon.