

1st SEMESTER: 2011/2012

PAGE 1 OF 7

UNIVERSITY OF SWAZILAND

FINAL EXAMINATION PAPER

PROGRAMME: B.Sc. IN AGRONOMY YEAR 1

B.Sc. IN HORTICULTURE YEAR 1

B.Sc. IN AGRICULTURAL ECONOMICS AND AGRIBUSINESS MANAGEMENT YEAR 1

B.Sc. IN AGRICULTURAL AND BIOSYSTEMS

ENGINEERING YEAR 1

B.Sc. IN ANIMAL SCIENCE YEAR 1

B.Sc. IN CONSUMER SCIENCE YEAR 1

B.Sc. IN CONSUMER SCIENCE EDUCATION YEAR 1

B.Sc. IN FOOD SCIENCE, NUTRITION AND

TECHNOLOGY YEAR 1

B.Sc. IN TEXTILE AND APPAREL DESIGN AND

MANAGEMENT YEAR 1

B.Sc. IN AGRICULTURAL EDUCATION YEAR 1

COURSE CODE: CP 101

TITLE OF PAPER: INTRODUCTORY CHEMISTRY

SECTION:1 INORGANIC CHEMISTRY
SECTION:2 ORGANIC CHEMISTRY

TIME ALLOWED: TWO [2] HOURS

INSTRUCTIONS: ANSWER FOUR [4] QUESTIONS, TWO [2] QUESTIONS

FROM EACH SECTION.

NOTE: THIS PAPER CONTAINS SEVEN [7] PAGES INCLUDING THE

COVER PAGE.

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

SECTION: 1 INORGANIC CHEMISTRY

QUESTION 1

- (a) Define and/or give brief descriptions of the following terms and phrases. Each answer carries two [2] marks.
- (i) Freezing point
- (ii) An electron
- (iii) A neutron
- (iv) Gas
- (v) An ionic compound
- (vi) Inorganic chemistry
- (vii) liquid
- (viii) Exhothermic reaction
- (ix) Proton
- (x) A subshell

[20]

(b) Calculate the percent elemental composition of dolomite [CaMg(CO₃)₂] given the atomic masses of the following elements:

Ca = 40.0800	amu
O = 15.9994	amu
Mg = 24.305	amu
C = 12.305	amu

Your final answers should be expressed to two [2] decimal places. [5]

25]

QUESTION 2

(a) Determine the mass of two atoms of ²³⁸₉₂ U (Uranium) in grams given that the mass of the isotope is 238.050784 amu and that Avogadros' number is equal to 6.022045 × 10²³ atoms per mole.

Show all calculations and express your final answer to four [4] decimal places.

[10]

(b) Calculate the atomic mass of magnesium given the abundances and masses of its naturally occurring isotopes. <u>Show all calculations and do not round off your final answer.</u>

<u>Isotope</u>	Abundance (%)		Mass (amu)
²⁴ Mg	77.89	\rightarrow	23.985042
²⁵ Mg	10.10	\rightarrow	24.985837
$^{26}_{12}{ m Mg}$	12.01	\rightarrow	25.982593
			[10]

(c) Calculate the formula mass of orthoclase feldspar [KAlSi₃O₈] by using the following information:

K = 39.0983 amu (atomic mass) Al = 26.9815 amu (atomic mass) $Si_3 = 84.3566$ g (molecular mass) $O_2 = 31.9988$ g (molecular mass) [5]

QUESTION 3

(a) How many atoms of hematite [Fe₂O₃] are there if it has a mass of 12.01 grams, given the molecular masses of:

$$Fe_2 = 111.694 \quad g$$

$$O_3 = 47.9983 \quad g \text{ and}$$
 Avogadro's number = 6.022045 X 10^{23} atoms per mole

[10]

(b) Briefly explain how you would practically make a 1 N H₂SO₄ from a 8 M H₂SO₄ stock solution (using water as a solvent) in the laboratory. Clearly show your calculations. Atomic masses: H = 1.00794 amu. S = 32.06 amu. O = 15.9994 amu. [15]

SECTION 2: ORGANIC CHEMISTRY

QUESTION 4

(a)	Define or briefly describe the following terms and phrawhere necessary. Each answer carries two [2] marks.	ses. Use a structural formula
(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)	Unsaturated hydrocarbon Hydrocarbon A phenol An alkyne An electrophile Meta directing group Protein An alkane An alcohol	
(x)	An alkene	20]
(b)	Write the molecular formula of an alkane containing e	leven [11] carbon atoms
(c)	Determine the molecular formula of an alkene that conatoms	ntains twenty four [24] hydrogen
(d)	What is the molecular formula of an alkyne that has	Six [6] carbon atoms. [1] [25]

OUESTION 5

- (a) Write the IUPAC names of the following compounds. Each answer carries two [2] marks.
- (i) CH₃-CH₂-CH₂-CH₂-CH-CH₃
 CH₂-CH₃
 (ii) CH₃-CH₂-CH-CH₂ CH₂ CH₂
 CH₂ CH₂ CH₃

(iv)
$$CH_3 - CH = C - CH - CH_2 - CH_3$$

 $CH_3 - CH_3 - CH_3 - CH_3$

- (v) $CH \equiv C CH_2 CH_3$
- (vi) OH
- (vii) $CH_3 CH = CH CH CH_3$
- (viii) CH₃ CH₂ CH₂ C O CH₃
- (ix) CH₃ CH₂ CH CH₃ O CH₃
- (x) CH₃ G H

[20]

[25]

- (b) Write <u>condensed</u> IUPAC structural formulae for the following compounds. Each answer carries one [1] mark.
- (i) 2 chloro 1 heptanol
- (ii) 2 iodo 4 flouroheptane
- (iii) Ethoxycyclohexene
- (iv) 2 pentyne
- (v) Hexanone

OUESTION 6

(a) Copy, complete and balance the following equations. Each answer carries one [1] mark.

(i)
$$CH_3 - CH_3 + F_2 =$$

(ii)
$$CH_2F_2 + F_2 =$$

(v)
$$CH_3CH=CH_2 + HC1 =$$

(vi)
$$CH_2=CH_2 + Br_2 =$$

(vii)
$$CH_2=CH_2 + 3O_2 =$$

(ix)
$$CH_3CH_2CH_2OH + HI$$

(x)
$$CH_3 - C - CH_3 + HCN =$$

(xi)
$$CH_4 + 2O_2 =$$

(xiii)
$$CH_3 - CH_2 OH + 3O_2 =$$

$$(xiv) CH4 + Cl2 =$$

- (b) Write correct condensed structural formulae of the incorrectly written condensed ones for the following compounds. Each answer carries two[2] marks.
- (i) Propane \neq CH₃-CH₄-CH₄
- (ii) Propanal ≠ CH₃-CH₂-CH₂
- (iii) Pentanol \neq CH₃-CH₋CH-CH-CH₂
 OH
- (iv) Methoxypentene \neq CH₃-O-CH₂-CH=CH-CH-CH₂
- (v) Hexanone \neq CH₃CH-CH₃-CH-C-CH₃ [10]

[25]