

SUPPLEMENTARY 2010/2011

PAGE 1 OF 6

THE UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION PAPER

PROGRAMMES:

B.Sc. IN AGRONOMY YEAR 1

B.Sc. IN HORTICULTURE YEAR 1

B.Sc. IN AGRICULTURAL ECONOMICS AND

AGRIBUSINESS MANAGEMENT YEAR 1

B.Sc. IN AGRICULTURAL AND BIOSYSTEMS ENGINEERING

YEAR 1

B.Sc. IN ANIMAL SCIENCE YEAR 1

B.Sc. IN CONSUMER SCIENCES EDUCATION YEAR 1

B.Sc. IN FOOD SCIENCE, NUTRITION AND TECHNOLOGY

YEAR 1

B.Sc. IN CONSUMER SCIENCES YEAR 1

B.Sc. IN TEXTILE AND APPAREL DESIGN AND MANAGEMENT

YEAR 1

B.Sc. IN AGRICULTURAL EDUCATION AND EXTENSION

YEAR 1

COURSE CODE: CP 101

TITLE OF PAPER:

INTRODUCTORY CHEMISTRY

SECTION 1: INORGANIC CHEMISTRY

SECTION 2: ORGANIC CHEMISTRY

TIME ALLOWED:

TWO [2] HOURS

INSTRUCTION:

ANSWER FOUR [4] QUESTIONS WITH TWO [2]

OUESTIONS FROM EACH SECTION

NOTE:

THIS PAPER CONTAINS SIX [6] PAGES INCLUDING

THE COVER PAGE

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

SECTION 1: INORGANIC CHEMISTRY

QUESTION 1

(a)	Define or give brief descriptions of the following terms and phrases. Each answer carries two [2] marks.				
	(i)	An acid			
	(ii)	An electron			
	(iii)	A shell	•		
	(iv)	An atom			
	(v)	An isotope			
	(vi)	A proton			
	(vii)	A compound			
	(viii)	A subshell			
	(ix)	A molecular formula			
	(x)	An endothermic reaction.	[20]		
(b)		the following information: Atomic masses: $Mg = 24.305$ amu; $O_2 = .007$ amu; Calculate the equivalent mass of magnesium hydroxide [M	15.9994 amu		

[25]

QUESTION 2

(a) Determine the atomic mass of magnesium given the following abundances and masses of its naturally occurring isotopes. Show all calculations and express your answer to five decimal places.

Isotope	Abundances (%)	Masses (amu)
24 Mg 12	78.99	23.985042
25 Mg 12	10.00	24.985837
26 Mg 12	11.01	25.982593
		[15]

(b) Calculate the formula mass of the mineral Mascagnite $[(NH_4)_2SO_4]$, given the atomic masses of the following elements. O = 15.9994 amu. N = 14.0067 amu. H = 1.007 amu. S = 32.06 amu. [10]

[25]

QUESTION 3

(a) Find the percent element composition of the mineral Celsian [BaAl₂Si₂O₈] by using the following information. Ba = 137.53 amu. Al = 26.9815 O = 15,9994 amu. Si = 28.00855 amu.

[15]

(b) By using the Product Rule, determine the pH values at the following concentrations.

(i) 0.001 M [5]

(ii) $2.0 * 10^{-2} M$ [5]

[25]

SECTION 2: ORGANIC CHEMISTRY

QUESTION 4.

(a)	Define or give brief descriptions of the following terms or phrases. Include a structural formula where possible. Each answer carries two [2] marks.				
	(i)	An hydrocarbon			
	(ii)	An alkene			
	(iii)	An alkane			
	(iv)	An alkyne			
	(v)	A saturated hydrocarbon			
	(vi)	An ether			
	(vii)	An organohalogen			
	(viii)	A phenol			
	(ix)	A nucleophile			
	(x)	An addition reaction.	[20]		
	(b)	Determine the molecular formulae of the following statements:	[20]		
	(i)	An alkane that has seven [7] carbon atoms.			
	(ii)	An alkane that has six [6] hydrogen atoms.			
	(iii)	An alkene that has six [6] carbon atoms.			
	(iv)	An alkene that has a total of twenty four hydrogen [24] atoms			

(v) A cycloalkane that has a total of six [6] carbon atoms.

[5]

[25]

QUESTION 5

- (a) Give the IUPEC names to each of the following compounds. Each answer carries two [2] marks.
 - (i) CH₃ CH₂ CH₃ - CH - CH₂ - CH₂-CH₂ - CH₃
 - (ii) CH₂ CH₃
 CH₃ CH₂ CH₃
 CH₂ CH₂ CH₃
 - $\begin{array}{ccc} CH_3-CH_2 & CH_2-CH_3\\ (iii) & CH_3-CH-CH_2-CH-CH_2-CH_3 \end{array}$
 - (iv) $CH_3 CH = C_2 CH_2 CH_2 CH_3$ $CH_2 - CH_2 - CH_2 - CH_3$
 - (v) $CH_3 C \equiv C CH_2 CH_2 CH_3$
 - (vi) **CH₃ CH₂ CH₂ CH₃ CH₃**
 - (vii) **CH**₃ **CH**₂ **CH**₂ **CH**₂ OH
 - (viii) CH₃ CH₂ CH CH CH₃ Cl Br
 - (ix) $CH_3 CH_2 C CH_3$
 - (x) $CH_3 CH_2 O CH_2 CH_2 CH_3$

[20]

(b) The reaction between an unsymmetrical alkene and an unsymmetrical reagent like an hydrogen halide gives two products of different quantities. State a rule that specifies the route followed by the electrophile so that one product is favored. Include an equation to illustrate the rule [5]

[25]

QUESTION 6

- (a) Write condensed IUPEC structural formulae for the following named compounds. Each answer carries two [2] marks.
 - (i) 2 bromo 2 heptanol
 - (ii) 3 methyl- 2 -pentyne
 - (iii) 3 iodo- 4 heptanol
 - (iv) 1, 1 dichloropethane
 - (v) Cyclohexane

[10]

- (b) Either copy and complete the following equations or just provide the required answers only. Each answer carries three [3] marks.
 - (i) $CH_3 CH CH_2 CH_3 + Cl_2 = CH_3$
 - (ii) $CH_4 + Cl_2 =$
 - (iii) $CH_4 + O_2 + spark =$
 - (iv) $CH_2 = CH_2 + Br_2 =$
 - (v) CH_3 $CH_3 CCH_3 CCH_3$ CCH_3 [15]