

1ST SEM. 2006/2007

PAGE 1 OF 7

UNIVERSITY OF SWAZILAND

FINAL EXAMINATION PAPER

PROGRAMME:

B.Sc. IN AGRONOMY YEAR 1

B.Sc. IN HORTICULTURE YEAR 1

B.Sc. IN AGRICULTURAL ECONOMICS AND AGRIBUSINESS MANAGEMENT YEAR 1

B.Sc. IN LAND AND WATER MANAGEMENT YEAR 1

B.Sc. IN ANIMAL SCIENCE YEAR 1

B.Sc. IN HOME ECONOMICS YEAR 1

B.Sc. IN HOME ECONOMICS EDUCATION YEAR 1

B.Sc. IN FOOD SCIENCE, NUTRITION AND

TECHNOLOGY YEAR 1

B.Sc. IN TEXTILE AND APPAREL DESIGN AND

MANAGEMENT YEAR 1

B.Sc. IN AGRICULTURAL EDUCATION YEAR 1

COURSE CODE:

CP 101

TITLE OF PAPER: INTRODUCTORY CHEMISTRY

SECTION:1 INORGANIC CHEMISTRY

SECTION:2 ORGANIC CHEMISTRY

TIME ALLOWED: TWO [2] HOURS

INSTRUCTIONS: ANSWER FOUR [4] QUESTIONS, TWO [2] QUESTIONS

FROM EACH SECTION.

NOTE: THIS PAPER CONTAINS SEVEN [7] PAGES INCLUDING THE

COVER PAGE.

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

PAGE 2 OF 7

SECTION: 1 INORGANIC CHEMISTRY

QUESTION 1

- (a) Define or give brief descriptions of the following terms and phrases. Each answer carries two [2] marks.
- (i) Freezing point
- (ii) An electron
- (iii) A neutron
- (iv) Solid
- (v) An ionic compound
- (vi) Inorganic chemistry
- (vii) liquid
- (viii) Endothermic reaction
- (ix) A strong acid
- (x) A shell

[20]

(b) Calculate the percent elemental composition of dolomite [CaMg(CO₃)₂] given the atomic masses of the following elements:

io wing cicincing,	
Ca = 40.0800	amu
O = 15.9994	amu
Mg = 24.305	amu
C = 12.305	amu

Your final answers should be expressed to two [2] decimal places. [5]

25]

QUESTION 2

(a) Determine the mass of two atoms of ²³⁸₉₂U (Uranium) in grams given that the mass of the isotope is 238.050784 amu and that Avogadros' number is equal to 6.022045 × 10²³ atoms per mole.

Show all calculations and express your final answer to four [4] decimal places.

[10]

PAGE 3 OF 7

(b) Calculate the atomic mass of magnesium given the abundances and masses of its naturally occurring isotopes. Show all calculations and do not round off your final answer.

<u>Isotope</u>	Abundance (%)		Mass (amu)
²⁴ Mg	77.89	\rightarrow	23.985042
²⁵ ₁₂ Mg	10.10	\rightarrow	24.985837
²⁶ Mg	12.00	\rightarrow	25.982593
			[10]

(c) Calculate the formula mass of orthoclase feldspar [KAlSi₃O₈] by using the following information:

$$K = 39.0983$$
 amu (atomic mass)
 $Al = 26.9815$ amu (atomic mass)
 $Si_3 = 84.3566$ g (molecular mass)
 $O_2 = 31.9988$ g (molecular mass) [5]

QUESTION 3

(a) How many atoms of hematite [Fe₂O₃] are there if it has a mass of 12.01 grams, given the molecular masses of :

$$Fe_2 = 111.694 \ g$$
 $O_3 = 47.9983 \ g$ and
 $Avogadro's number = 6.022045 \ X \ 10^{23}$ atoms per mole

[10]

(b) Briefly explain how you would practically make a 1 N H₂SO₄ from a 8 M H₂SO₄ stock solution (using water as a solvent) in the laboratory. Clearly show your calculations. Atomic masses: H = 1.00794 amu. S = 32.06 amu. O = 15.9994 amu.

[25]

PAGE 4 OF 7

[25]

SECTION 2: ORGANIC CHEMISTRY

QUESTION 4

(a)	Define or briefly describe the following terms and phythere necessary. Each answer carries two [2] mark		
(i)	Unsaturated hydrocarbon		
(ii)	Hydrocarbon		
(iii)	A phenol		
(iv)	Essential amino acids		
(v)	An electrophile		
(vi)	Para directing group		
(vii)	Protein		
(viii)	An alkane		
(ix)	An alcohol	-	
(x)	An alkene	[20]	
(b)	Write the molecular formula of an alkane containing eleven [11] carbon atoms		
		[2]	
(c)	Determine the molecular formula of an alkene that contains twenty four [24] hatoms		
	·	[2]	
(d)	What is the molecular formula of an alkyne that has	Six [6] carbon atoms. [1]	

QUESTION 5

- (a) Write the IUPAC names of the following compounds. Each answer carries two [2] marks.
- (i)
- (ii)
- CH₃-CH₂.CH₂.CH₂.CH-CH₃ CH₂-CH₃ CH₃-CH₂-CH-CH₂ CH₂ CH₂ CH₂ CH₂ CH₃ (iii)

(iv)
$$CH_3 - CH = C - CH - CH_2 - CH_3$$

 $CH_3 OH$

(vii)
$$CH_3 - CH = CH - CH - CH_3$$

[20]

- (b) Write <u>condensed</u> IUPAC structural formulae for the following compounds. Each answer carries one [I] mark.
- (i) 2 chloro 1 heptanol
- (ii) 2 iodo 4 heptinal
- (iii) Ethoxycyclohexene
- (iv) 2 pentyne
- (v) Hexanone

(vi) [25]

OUESTION 6

- (a) Copy, complete and balance the following equations. Each answer carries one [1] mark.
- (i) $CH_3 CH_3 + F_2 =$

(ii)
$$CH_2F_2$$
 + F_2 =

6

(v)
$$CH_3CH=CH_2 + HCl =$$

(vi)
$$CH_2=CH_2$$
 + Br_2 =

(vii)
$$CH_2=CH_2 + 3O_2 =$$

(ix)
$$CH_3CH_2CH_2OH + HI$$
 =

$$(x) CH_3 - C - CH_3 + HCN =$$

$$(xi)$$
 $CH_4 + 2O_2 =$

(xiii)
$$CH_3 - CH_2 OH + 3O_2 =$$

$$(xiv) CH_4 + Cl_2 =$$

$$(xv) \qquad OH \\ + H_2SO_4 =$$

PAGE 7 OF 7

- Write correct condensed structural formulae of the incorrectly written condensed ones for the (b) following compounds. Each answer carries two[2] marks.
- CH₃-CH₃-CH₄ (i) Propane
- CH₃-CH₂-CH₂ (ii) Propanal
- Pentanol (iii)
- CH₃-O-CH₂-CH=CH-CH-CH₂ (iv) Methoxypentene
- CH₃CH-CH₃-CH-C-CH₃ (v) Hexanone [10]

[25]