

UNIVERSITY OF ESWATINI FACULTY OF AGRICULTURE

1ST SEM. 2018/2019 RE-SIT EXAMINATION PAPER

PROGRAMMES:

BSc. ANIMAL SCIENCE II

BSc. ANIMAL SCIENCE (DAIRY OPTION) II

BSc. AGRONOMY II BSc. HORTICULTURE II

BSc. AGRICULTURAL EDUCATION II BSc. AGRICULTURAL EXTENSION II

COURSE CODE:

ASC205

TITLE OF PAPER:

PRINCIPLES OF GENETICS

TIME ALLOWED:

TWO (2) HOURS

INSTRUCTIONS:

1. ANSWER QUESTION ONE IN SECTION A

AND ANY OTHER TWO QUESTIONS IN SECTION B.

2. CANDIDATES MAY USE SCIENTIFIC CALCULATORS.

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

42

Section A (Compulsory) Answer ALL questions in this section

Question 1

- (a) Briefly explain how genetics has affected agriculture and modern biological research.

 [6 marks]
- (b) Explain the chromosome theory of inheritance

[6 marks]

(c) Explain how Mendel's 1st and 2nd laws are related to meiosis.

[6 marks]

(d) Briefly describe the molecular organisation of eukaryotic chromosomes.

[6 marks]

(e) Two black Guinea pigs were mated and over two seasons produced 29 black and 9 white offspring. Explain these results, giving the genotypes of parents and progeny.

[6 marks]

- (f) A herd of pure breeding black polled (hornless) bulls was allowed to mate with a herd of pure breeding horned brown cows. All F1 calves were black and hornless. One F₁ bull and a fellow F₁ cow are now crossed to get an F₂ calf. Explain the genetic relationships between the two fur colour phenotypes as well as polled and horned phenotypes. Hence, calculate the probability that the F₂ calf will have either horns or brown fur.
- (g) A pure-breed albino Labrador is mated with a pure-bred black Labrador. All the F₁ are black. When the black F₁ progeny are crossed with each other, 89 black, 31 brown, and 42 albino dogs were obtained.
 - (i) Explain the observations described above.

[2 marks]

(b) Using letters of your own choice, indicate the genotypes of the two pure breeding parental dogs, the F₁, and the F₂ progeny. [8 marks]

[Total marks = 50]

Section B (Answer any two questions)

Question 2

(a) State four traditional subdivisions of genetics and briefly state what each covers.

[9 marks]

(b) Explain the difference between the following:

(i) Epistasis and dominance,

[4 marks]

(ii) Recessive epistasis and dominant epistasis.

[4 marks]

Explain the following genetic phenomena.

(i) In the absence of epistasis, a heterozygous progeny has a different phenotype from the two homozygous parents. [4 marks]

(ii) Two heterozygous Manx cats (Mn) when crossed give progeny in the ratio of 2 Manx cats (Mn): 1 normal-tailed cat (mm) and not 3M-:1mm. [4 marks]

[Total marks = 25]

Question 3

- (a) Explain why tortoiseshell and calico cats are almost always female, highlighting why they have a patchy distribution of orange and black fur. [10 marks]
- (b) John and Martha are contemplating having children, but John's brother has galactosemia (an autosomal recessive disease) and Martha's great-grandmother also had galactosemia. Martha has a sister who has three children, none of whom have galactosemia. With the aid of a genotyped pedigree, determine the risk that John and Martha's first child will have galactosemia. [15 marks]

[Total marks = 25]

Question 4

In Drosophila, curly wings (k), black body (b), and cinnabar eyes (c) result from recessive alleles that are all located on chromosome 2. A homozygous wild-type fly was mated with a curly, black, and cinnabar fly, and the resulting F1 females were test-crossed with curly, black and cinnabar males. The following F2 progeny were produced from the test-cross:

Progeny genotype	Frequency
k b ⁺ c	117
k ⁺ b ⁺ c ⁺	825
k ⁺ b c	50
k ⁺ b ⁺ c	6
kbc	828
k b ⁺ c ⁺	51
k⁺ b c⁺	115
k b c ⁺	8
Total	2000

Use the data above to determine the order of genes on the chromosome, then compute coefficient of coincidence and gene interference during recombination.

[Total marks = 25]

END OF EXAMINATION PAPER