

UNIVERSITY OF SWAZILAND

2ND SEM. 2010/2011

FINAL EXAMINATION PAPER

PROGRAMME:

B.Sc. ANIMAL SCIENCE III

B. Sc. ANIMAL SCINCE-DAIRY III

B. Sc. AGRICULTURAL EDUCATION III

COURSE CODE:

AS 304

TITLE OF PAPER:

NUTRITION, FEEDS AND FEEDING

TIME ALLOWED:

TWO (2) HOURS

INSTRUCTIONS:

ANSWER ANY FOUR (4) QUESTIONS

THIS PAPER MAY NOT BE OPENED UNTIL THE CHIEF INVIGILATOR HAS GRANTED PERMISSION.

QUESTION 1

- (a) Using the Daily Nutrient Requirements of Lactating Dairy Cattle tables, tabulate the nutrient requirements in terms of dry matter, digestible protein, metabolisable energy, total digestible nutrients, Ca and P of the following animals:
 - (i) A lactating Jersey cow of 400 kg liveweight producing 15 kg/d of milk with a butterfat content of 4.5%. [10]
 - (b) A farmer has available on the farm maize grain with 87 % DM, 8 % CP, 11 MJ/kg ME and 80 % TDN, and sunflower meal with 89 % DM, 34 % CP, 9.5 MJ/kg ME and 69 % TDN.
 - (i) Using the Pearson Square method, calculate the composition of the required mixture of the two ingredients to formulate a 16 % CP broiler meal. [6]
 - (ii) Calculate the DM, ME and TDN content of the broiler meal. [9]

QUESTION 2

Discuss the feed resources available to livestock farmers in Swaziland. [25]

QUESTION 3

Explain the macro minerals calcium and phosphorous under the following headings:

(a) Source [5]
(b) Function [10]
(c) Deficiency symptoms [10]

QUESTION 4

- (a) Compare and contrast the digestion of carbohydrates in monogastrics and ruminants. [10]
- (b) Explain the partitioning of feed energy in an animal. All energy losses must be indicated. [15]

QUESTION 5

The determination of chemical composition in animal feeds is not an absolute measure of nutritive value of feeds. Give a detailed account of one way of further evaluating livestock feeds through feeding of animal. [25]

TABLE 2 Daily Nutrient Requirements of Lactating Dairy Cattle

Body Weight (kg)	Dry Feed (kg)	Protein		~ Energy							7
		Total (g)	Digest- (ble (g)	NE lactat- ing cows (Mcal)*	DE (Mcal)	ME (Mcal)	TĎN (kg)	Ca (g)	P (g)	Caro- tene (mg)	Vita-
Mainten	ance of Mai	ture T actas	in= Causa				<u></u>	- 3	""	\ <u>'.</u>	1,000,109
350	5.0	468	220 ···	6.9	12.3						
400	<u></u> 5:3	521	245	7.6	13.6	10.1	2.8	14	11 >>	37	15
450	6.0	585	275	8.3		11.2	3.1	17	73	42	17
500_	625	638	300	⊋ 9.0	15.0 16.3	12.3	3.4	18	14	48	19
	26 750 70		325	9.6		13,4	1.1	20	15	53	21
600	7:55	734	345	10.3	17.6	14.4	4.0	21	16	58	25
650	8.0	776	365	10.5	18.9	15.5	4.2	22	17	. 64	26 ∵ ∵
700 .	8.5	830	390)	11.6	19.8	16.2	4.5	23	18	69	28
750		872	410 2	12.2	21.1	17.3	4.8	25	19	74	30
800	9.5	915	430	12.8		18.0	5.0	26	20	79	32 - 3
	C. 100 F.		100		23.3	19,1	5.3	27	21·-·	85	34 💃
Mainten	ance and Pr	egnancy (I	Last 2 Mont	ins of Gestari	oo)						
330	6.4	570	** 315#	8.7	15.8	13.0					W
400	7.2	≥ 650	355	9.7	17.2	14.1	3.6	21	16	67	27
450	7,9	730	** 400	10.7	19.4	15.9	4.0	23	18 💉	76	30
500	€ 8.6	780	430	11.6	21.1	17.3	4.4	26 ⊸∹	20	. 86	34
550	9.3	850	465	12.6	22.9	18.8	4.8	29	22	95	38 💸
600	10.0	910	500	13.5	24.6	20.2	5.2	31	24	105	42
650	10.6	960	530	14.4	26.4	21.6	5.6	34	26	114	46
700	11.3	1000	555	15.3	27.7	22.7	6.0	36	28	124	50 "y
750	J2.0	1080	595	16.2	29.5	24.2	6.3	39	30	133	53
800	12.6	1150	630	17.0	31.2	25.6	6.7 7.1	42 44	32 34	143 152	57 61
Milk Pro	duction (N	utrienn Re	aniend nac	La ad Maria					\mathbb{Z}_{N}	. 134	O).
%Fat								. (1.2) 24 - 16/11			
2.5		66	42 -	0.59		2.52					
3.0		70	45	0.59	1.12	0.91	0.255	2.4	1.7		
3.5	1.5	74	48	0.69	1.23	0.99	0.280	2.5	1.8		
4.0		78	51		1.34	1.06	0.305	2.6	1.9		
4.5		82	54 ···	0.78	1.46	1.13	0.330	2.7	2.0	11 to 17	
5.0		86		0.78	1.57	1.21	0.355	2.8	2.1		Biggs (
5.5		90	 .58		1.68	1.28	0.380	2.9	2.2		in spiller
6.0		94	60	0.88	1.79	1.36	0.405	3.0	2.3		
5.0		-77	0 U	0.93	1.90	1.43	0.430	3.1	2.4	1.74	

The energy requirements for maintenance, reproduction, and milk production of lactating cows are expressed in terms of NE total the maintenance of lactating cows = 0.085 Mcal NE total new models. To allow for growth, add 20 percent to the maintenance allowance during the first region and 10 percent to the maintenance allowance during the first region and to account to the maintenance allowance during the first region and the first re

The energy requirement is presented as the actual amount required with no adjustment to compensate for any reduction in feed value at high levels of feed intake. To account for depressions in digestibility, which occur at high planes of nutrition with certain types of rations, such as corn allage, course textured grains or forages with high cell-wall content (e.g., Bermuda gran, sorghum, etc.), as increase of 3 percent feed should be allowed for each 10 kg of milk produced above 20 kg/day.