

UNIVERSITY OF SWAZILAND

2ND SEM. 2007/2008

SUPPLEMENTARY EXAMINATION PAPER

PROGRAMME:

B.Sc. in Animal Science Year II

COURSE CODE:

APH 205

TITLE OF PAPER:

NUTRITION, FEEDS AND FEEDING

TIME ALLOWED:

TWO (2) HOURS

INSTRUCTIONS:

ANSWER ANY 4 QUESTIONS.

THIS PAPER MAY NOT BE OPENED UNTIL THE CHIEF INVIGILATOR HAS GRANTED PERMISSION.

QUESTION 1

a) A sheep consuming 1.2 kg/day of silage DM, containing 19 MJ GE/kg DM excreted 5.0 MJ/day of energy in faeces, 1.36 MJ/day in urine and 1.80 MJ/day in methane.
 Calculate the digestible energy (DE) and metabolizable energy (ME) value of silage per kg DM.
 (8 Marks)

b) Explain the following terms:

i. Digestible crude protein	(3 Marks)
ii. Rumen degradable protein	(3 Marks)
iii. Net energy	(3 Marks)
iv. Total digestible nutrients	(3 Marks)

c) Explain the symbiotic relationship between rumen microorganisms and the ruminant animal. (5 marks)

QUESTION 2

Describe and illustrate how ruminants digest and metabolize nitrogenous compounds in the rumen. (25 marks)

QUESTION 3

What nutritional problems do cattle that rely solely on range feed resources face on Swazi Nation Land in Swaziland? How can these problems be addressed?

(25 Marks)

QUESTION 4

Write short notes on the following measures of protein quality for monogastric animals:

a)	Protein efficiency ratio (PER)	(5 Marks)
b)	Gross protein value (GPV)	(5 Marks)
c)	Nitrogen balance	(5 Marks)
d)	Net protein retention (NPR)	(5 Marks)
e)	Biological value (BV)	(5 Marks)

QUESTION 5

a) The table below shows results of a digestibility trial in which 3 sheep were fed on alfalfa hay.

	Dry Matter (DM)	Organic Matter (OM)	Crude Protein (CP)	Ether Extract	Acid Detergent Fibre (ADF)
Chemical analyses (g/kg DM)					
Alfalfa Hay	-	919	93	15	350
Faeces	-	870	110	15	317 .
Nutrients					
(kg/day)					
Consumed	1.63	1.50	0.151	0.024	0.57
Excreted	0.76	0.66	0.084	0.011	0.24

- i) Calculate the digestibility coefficients of DM, OM, CP, EE and ADF. (5 Marks)
- ii) Calculate the composition of alfalfa hay in terms of digestible nutrients (OM, CP, EE and ADF). (8 Marks)
- b) Define metabolic faecal nitrogen (MFN) and explain how you would estimate the amount of MFN. (3 Marks)
- c) The detergent system for fibre analysis was designed to replace crude fibre determination, especially for ruminant animals. Identify the 3 chemical components determined under system and write short notes on them.
 (9 Marks)