1st SEM. 2020/2021



Page 1 of 2

# UNIVERSITY OF ESWATINI

## **RE-SIT EXAMINATION PAPER**

PROGRAMME:

BSc. in Agricultural Economics and Agribusiness

Management Year 4

COURSE CODE:

**AEM407** 

TITLE OF PAPER: PRODUCTION ECONOMICS

TIME ALLOWED: TWO (2): HOURS

INSTRUCTION: 1. ANSWER ALL FOUR QUESTIONS

2. EACH QUESTION CARRIES 25 POINTS

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

#### Question 1 (25 MARKS)

- a) What do you understand by the following terms:
  - i. Production function

3 MARKS

ii. Economic efficiency

4 MARKS

- b) Differentiate among the following:
  - i. Short run and long run production functions

6 MARKS

ii. Short run and long run costs

6 MARKS

iii. Marginal rate of product substitution and Marginal rate of input substitution

6 MARKS

## Question 2 (25 MARKS)

Given the production function:

$$Y = 18X_1 - X_1^2 + 14X_2 - X_2^2;$$

and the prices:  $Px_1 = E9$ ;  $Px_2 = E7$ ;  $P_Y = E0.65$ 

i. Compute the profit maximising levels of inputs

15 MARKS

ii. What is the value of Y

5 MARKS

iii. What is the profit

5 MARKS

#### Question 3 (25 MARKS)

- a) Suppose a farmer: uses two inputs in his production process (i.e. inputs:  $X_1$  and  $X_2$ ); has E18 to spend on variable inputs (i.e. Total variable cost (TVC) = E18); and has a total variable cost function given by TVC =  $Px_1X_{1+}$   $Px_2X_2$  and the prices  $Px_1$  = E2;  $Px_2$  = E3:
  - i. Find the equation of the isocost line

3 MARKS

ii. What is the slope of the isocost line

3 MARKS

iii. What is the intercept on the  $X_1$  axis

3 MARKS

- b) Given the product-product relationship equation:  $Y_1 = 100 0.0065Y_2^2$  and the prices  $P_{Y1} = 5$  and  $P_{Y2} = 6$ :
  - i. What is the maximum amount of  $Y_1$  and  $Y_2$  that can be obtained?

4 MARKS

ii. What is the exact MRPS?

4 MARKS

iii. What is the slope of the isorevenue line?

4 MARKS

iv. Find the optimum combination of  $Y_1$  and  $Y_2$  that maximise revenue.

4 MARKS

# Question 4 (25 MARKS)

Consider two production functions for maize (M) and Beans (B) each employing labour (L) as the variable Input:

$$M = 10 + 2L_{M} - 0.1L_{M}^{2}$$
$$B = 5 + 4L_{B} - 0.2L_{B}^{2}$$

If the price of Maize is E2.00 per Kg and price of beans is E 1.00 per Kg. How would you allocate 10 labourers among the maize and beans enterprises?

25 MARKS