

Page 1 of 3

UNIVERSITY OF ESWATINI

FINAL EXAMINATION PAPER

PROGRAMME:

BSc. in Agricultural Economics and Agribusiness

Management Year 4

COURSE CODE:

AEM407/AEM 405

TITLE OF PAPER: PRODUCTION ECONOMICS

TIME ALLOWED: TWO (2): HOURS

INSTRUCTION: 1. ANSWER ALL FOUR QUESTIONS

2. EACH QUESTION CARRIES 25 POINTS

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

Question 1 (25 MARKS)

a) Discuss the five (5) production economics assumptions.

15 MARKS

b) Where should a rational firm produce? In your answer discuss why the rational firm should produce or not produce in stages I, II and III. 10 MARKS

Question 2 (25 MARKS)

a) Consider the production function, Y = 4X. What is the:

i.	Inverse production function	2 MARKS
ii.	APP	2 MARKS
iii.	MPP	2 MARKS
iv.	TVC	2 MARKS
v.	AVC	2 MARKS
vi.	MC	2 MARKS

b) Consider the production function $Y = 70 + 2X - 0.02X^2$.

i. Find the level of X at which Y is a maximum. 4 MARKS

ii. Calculate the elasticity of production, APP and MPP when X = 30 4 MARKS

iii. Find the level of X maximizing net returns (i.e. profits) when $P_x = E1$ and $P_y = E10$.

5 MARKS

Question 3 (25 MARKS)

Given the product-product relationship equation: $Y_1 = 100 - 0.0065Y_2^2$ and the prices $P_{Y1} = 5$ and $P_{Y2} = 6$:

1.	What is the maximum amount of Y_1 and Y_2 that can be obtained?	5 MARKS
ii.	What is the exact MRPS?	5 MARKS
iii.	What is the slope of the isorevenue line?	5 MARKS
iv.	Find the optimum combination of Y_1 and Y_2 that maximise revenue	10 MADES

Question 4 (25 MARKS)

a) Consider two production functions for maize (M) and Beans (B) each employing labour (L) as the variable Input:

$$M = 10 + 2L_M - 0.1L_M^2$$
$$B = 5 + 4L_B - 0.2L_B^2$$

If the price of Maize is E2.00 per Kg and price of beans is E 1.00 per Kg. How would you allocate 10 labourers among the maize and beans enterprises?

12 MARKS

b) Consider the production $Y = X_1^{3/4} X_2^{1/4}$. Find the least cost combination of X_1 and X_2 to produce 12 units of Y when (i) $Px_1 = 3$; $Px_2 = 1$; and when (ii) $Px_1 = 48$; $Px_2 = 1$.

13 MARKS