

1st SEM. 2017/2018

UNIVERSITY OF SWAZILAND

FINAL EXAMINATION PAPER

PROGRAMME: B.Sc. in Agricultural Economics and Agribusiness Management Year 3

COURSE CODE: AEM 302 / 307

TITLE OF PAPER: INTRODUCTION TO ECONOMETRICS

TIME ALLOWED: TWO (2) HOURS

INSTRUCTION: 1.

ANSWER ALL QUESTIONS

EACH QUESTION CARRIES TWENTY FIVE (25)

MARKS

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

150

QUESTION 1

Consider the following regression output:

$$\hat{Y} = 0.2033 + 0.6560X_t$$

$$se = (0.0976) (0.1961)$$

 $r^2 = 0.397$ RSS = 0.0544 ESS = 0.0358

Where Y = labor force participation rate (LFPR) of women in 1972

and X = LFPR of women in 1968. The regression results were obtained from a sample of 19 cities in the Republic of South Africa.

- i. How do you interpret this regression? [8 Marks]
- ii. Test the hypothesis: Ho: $\beta_2 = 1$ against H1: $\beta_2 > 1$. Which test do you use? And why? What are the underlying assumptions of the test(s) you use? [10 MARKS]
- iii. Set up an ANOVA table for the above regression output.

 [7 MARKS]

Sp

QUESTION 2

Consider the following models.

Model A:
$$Y_{t} = \alpha_{1} + \alpha_{2} X_{2t} + \alpha_{3} X_{3t} + \mu_{t}$$

Model B: $(Y_{t} - X_{2t} = \beta_{1} + \beta_{2} X_{2t} + \beta_{3} X_{3t} + \mu_{t})$

i. Will OLS estimates of α_1 and β_1 be the same? Why?

[4 MARKS]

ii. Will OLS estimates of α_3 and β_3 be the same? Why?

[4 MARKS]

- iii. What is the relationship between α_2 and β_2 ? [7 MARKS]
- iv. Can you compare the R^2 terms of the two models? Why or why not?

QUESTION 3

Consider the following model

$$Y_i = \alpha_1 + \alpha_2 D_i + \beta X_i + \mu_i$$

Where Y = annual salary of a university professor

X = years of teaching experience

D = dummy for gender

Consider three ways of defining the dummy variable.

15X

- i. D = 1 for male, 0 for female.
- ii. D = 1 for female, 2 for male.
- iii. D = 1 for female, -1 for male.

Interpret the preceding regression model for each dummy assignment. Is one method preferable to another? Justify your answer. [25 MARKS]

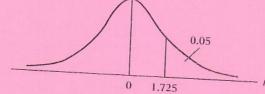
QUESTION 4

- i. Why do we need regression analysis? Why not simply use the mean value of the regressand as its best value?

 [5 MARKS]
- ii. Briefly explain the purpose of including an error term in a regression equation.

 [4 MARKS]
- iii. Say true or false or uncertain and explain: Even though the disturbance term in the CLRM is not normally distributed, the OLS estimators are still unbiased.
- iv. What is the difference between the population and sample regression functions? Is this a distinction without difference? [6 MARKS]

TABLE D.2 PERCENTAGE POINTS OF THE t DISTRIBUTION


Example

Pr(t > 2.086) = 0.025

Pr(t > 1.725) = 0.05

for df = 20

Pr(|t| > 1.725) = 0.10

						0 1,725	
	Pr 0.25	0.10	0.05				
df	0.50		0.00	0.023	0.01	0.005	
-	-	0.20	0.10	0.05	0.02		0.001
1	1.000	3.078	6044			0.010	0.002
2	0.816		0.014	1 12.700		63.65	7 010 0
3	0.765		1020		6.965		
4	0.741	1.000	2.000		4.541	0.02	-2.021
		1.533	2.132	2.776	3.747	0.04	10.214
5	0.727	1.476	2.015	100	0.747	4.604	7.173
6	0.718	1.440		2.571	3.365		5.893
7	0.711	1.415	1.895	2.447	0.140	3.707	0.000
8	0.706	1.397	1 10 10 30 30 70 1	2.365	2.998	3.499	0.200
9	0.703	1.383	1.860	2.306	2.896	3.355	1.703
10	0 ===		1.833	2.262	2.821	3.250	1.001
11	0.700	1.372	1.812	2.228		0.250	4.297
	0.697	1.363	1.796	2.201	2.764	3.169	4.144
12	0.695	1.356	1.782		2.718	3.106	4.025
13	0.694	1.350	1.771	2.179	2.681	3.055	3.930
14	0.692	1.345	1.761	2.160	2.650	3.012	
15	0.001	- Contract	1.701	2.145	2.624	2.977	3.852
16	0.691	1.341	1.753	2.131	0.000		3.787
17	0.690	1.337	1.746	2.120	2.602	2.947	3.733
18	0.689	1.333	1.740	2.110	2.583	2.921	3.686
19	0.688	1.330	1.734	2.101	2.567	2.898	3.646
19	0.688	1.328	1.729	2.093	2.552	2.878	3.610
20	0.687	1.325	20000000	2.093	2.539	2.861	3.579
21	0.686	1.323	1.725	2.086	2.528	2.845	
22	0.686	1.323	1.721	2.080	2.518		3.552
23	0.685		1.717	2.074	2.508	2.831	3.527
24	0.685	1.319	1.714	2.069	2.500	2.819	3.505
22	0.005	1.318	1.711	2.064	2.492	2.807	3.485
25	0.684	1.316	1.708			2.797	3.467
26	0.684	1.315	1.706	2.060	2.485	2.787	2.450
27	0.684	1.314	1.708	2.056	2.479	2.779	3.450
28	0.683	1.313		2.052	2.473	2.771	3.435
29	0.683	1.311	1.701	2.048	2.467	2.763	3.421
30	0.000		1.699	2.045	2.462	2.756	3.408
40	0.683	1.310	1.697	2.042		2.750	3.396
60	0.681	1.303	1.684	2.042	2.457	2.750	3.385
120	0.679	1.296	1.671	2.000	2.423	2.704	3.307
700000	0.677	1.289	1.658		2.390	2.660	3.232
00	0.674	1.282	1.645	1.980	2.358	2.617	3.160
Note: T	ho ama"			1.960	2.326	2.576	3.090
Note: The smaller probability step							

Note: The smaller probability shown at the head of each column is the area in one tail; the larger probability 3.090

Note: The smaller probability snown at the fleation each column is the area in one tail, the larger probability is the area in both tails.

Source: From E. S. Pearson and H. O. Hartley, eds., Biometrika Tables for Statisticians, vol. 1, 3d ed., table 12, Cambridge University Press, New York, 1966. Reproduced by permission of the editors and trustees of Biometrika.