1st SEM. 2016/2017

page 1 of 3

UNIVERSITY OF SWAZILAND

FINAL EXAMINATION PAPER

PROGRAMME: BSc. in Agricultural Economics and Agribusiness

Management Year II

COURSE CODE: AEM 203

TITLE OF PAPER: MATHEMATICS FOR ECONOMISTS

TIME ALLOWED: 2:00 HOURS

INSTRUCTION: 1.ANSWER ALL QUESTIONS

2. EACH QUESTION CARRIES 25 MARKS

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

Page 2 of 3

Question 1. (25 marks)

1.1 Given the input-output matrix

$$\mathbf{A} = \begin{bmatrix} 0.1 & 0.1 \\ 0.4 & 0.5 \end{bmatrix} \text{ and demand vector } \mathbf{D} = \begin{bmatrix} 30 \\ 20 \end{bmatrix}$$

Find the production vector that will enable the economy to meet the demands?

 $1.2\,$. 1. A multiproduct firm is faced with the following cost function and a production constraint. The production constrains is stipulated in terms of production quota. Cost function : $C = 2Q_1 + 4Q_2 - Q_1Q_2 + 10$

Production quota: $Q_1 + Q_2 = 16$

- a) Set up a constrained cost minimization problem from the information given.
- b) Construct the corresponding Lagrangian function.
- c) Determine the critical values of $\,Q_1\,$ and $\,Q_2\,$.
- d) Confirm that the critical values present a minimum

Question 2. (25 marks)

2.1 Given Q = 30 - 3p + 0.02y, where Q is quantity demanded, p is price, and y is income, and given p = 60 and y = 1000Find the a) price elasticity of demand.

b) income elasticity of demand

2.2 The owner of a café has found that the relationship among the daily demand for ice-cream and the prices charged for ice-cream(i) and cool drinks (c) is expressed by means of the equation D = 2000 - 2.5i + 0.39c, where D is measured in liters, I in cents per liter and c in cents per can.

Calculate the partial derivatives $\frac{\partial D}{\partial i}$ and $\frac{\partial D}{\partial c}$. Explain the meaning of these derivatives.

1st SEM. 2016 / 2017

Page 3 of 3

Question 3. (25 marks)

- 3.1 Find MPK and MPL for the following production function $Q = 16K^{1/2}L^{1/4}$ and determine whether or not the function is characterized with diminishing returns to factor inputs.
- 3.2 Calculate the definite integrals.

$$\mathbf{a)} \qquad \int\limits_{0}^{1} 5^{x} dx$$

a)
$$\int_{0}^{1} 5^{x} dx$$

b) $\int_{1}^{2} x(\chi^{2} + 6) dx$

Question 4. (25 marks)

4.1 An analysis of the financial statements of a coal mine, indicates that when x tons of coal are extracted a day, the income and cost (E) of the mine are respectively;

$$I(x) = 300x - 2x^{2}$$

$$C(x) = x^{2} - 2x + 500.$$

The mine is taxed at a rate of 30% on its gross profit.

Determine a. the value of x which maximize the income.

b. the gross profit and the value of x which maximizes it.

c. the net profit and the value of x which maximizes it.

4.2 Consider the following demand function for good a

$$Q_a = 200 - 4p_a - 2p_r + 0.2y$$

Where Qa= Quantity of good a in demand.

 $p_a = price of good a.$

 P_r = price of some related goods r.

Y = consumer income.

Given $p_a = 20$, $p_r = 24$, y = 2000,

Find the following elasticity and interpret your results.

- a) Own price elasticity of demand
- b) Cross-price elasticity of demand
- c) Income elasticity of demand