1st SEM. 2013/2014

PAGE 1 of 3

UNIVERSITY OF SWAZILAND

FINAL EXAMINATION PAPER

PROGRAMME:

BACHELOR OF SCIENCE IN

AGRICULTURAL ECONOMICS AND

AGRIBUSINESS MANAGEMENT

COURSE CODE:

AEM 302

TITLE OF PAPER:

INTRODUCTION TO ECONOMETRICS

TIME ALLOWED:

TWO HOURS

INSTRUCTIONS:

1. ANSWER ALL FOUR (4) QUESTIONS

2. USE THE FORMULAS ON PAGE 3 TO

ANSWER THE QUESTION #1

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

QUESTION #1 [25 Marks]

You are given the data in the following table where Y = endogenous variable and X = exogenous variable.

Yi	86	79	76	69	65	62	52	51	48
Xi	3	7	12	17	25	35	45	55	70

- a) Use the ordinary least squares method to estimate the regression coefficients [10 Marks]
- b) Graph the estimated regression equation [5 Marks]
- c) Calculate the coefficient of determination [10 Marks]

QUESTION #2 [25 Marks]

Describe and discuss the anatomy of econometric modeling [25 Marks]

QUESTION #3 [25 Marks]

- a) Develop an analysis of covariance (ANCOVA) econometric model containing at least four variables of your choice [10 Marks]
- b) Define your variables in part (a) [8 Marks]
- c) Interpret your regression model for each coefficient [7 Marks]
 Hint: Interpret the coefficients of your variables without estimating their values.

QUESTION #4 [25 Marks]

Define the following terms:

a)	Variation	[5 Marks]
b)	Test of significance	[5 Marks]
c)	Logit model	[5 Marks]
d)	Homoscedasticity	[5 Marks]
e)	Specification error	[5 Marks]

SLOPE AND y-INTERCEPT FOR THE ESTIMATED REGRESSION EQUATION:

$$b_{1} = \frac{\sum (x_{i} - x_{j})(y_{i} - y_{j})}{\sum (x_{i} - x_{j})^{2}}$$

$$b_{0} = y_{j} - b_{1}x_{j}$$

COEFFICIENT OF DETERMINATION:

SUM OF SQUARES DUE TO ERROR: SSE = $\sum (y_i - y^*)^2$

SUM OF SQUARES DUE TO REGRESSION: SSR = $\sum (y^{-} - y^{-})^2$ TOTAL SUM OF SQUARES: SST = $\sum (y_{-} - y^{-})^2$

END OF PAPER